Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Microbiol ; 205(1): 9, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459234

RESUMEN

An obligately anaerobic, rod-shaped, Gram-stain-positive, non-spore-forming, non-motile bacterial strain; designated as CtC72T was isolated from the rumen of cattle. The 16S rRNA gene sequence similarity of less than 98.65% revealed the strain as a member of the genus Actinomyces, nearest to but distinct from Actinomyces qiguomingii DSM 106201T, Actinomyces ruminicola DSM 27982T, Actinomyces procaprae JCM 33484T, Actinomyces succiniciruminis TISTR 2317, Actinomyces glycerinitolerans TISTR 2318. The low values of digital DNA-DNA hybridization (< 70%) and average nucleotide identity (< 95%) further highlighted the distinctive nature of strain CtC72T from its closest relatives. The strain CtC72T could grow at temperatures between 30 and 50 °C (optimum 40 °C), pH between 6.0 and 9.0 (optimum 7.5-8.0), and NaCl between 0 and 1.5% (optimum 0%). The strain hydrolysed cellulose and xylan and utilised a range of mono-, di-, and oligo-saccharides as a source of carbon and energy. Glucose fermentation resulted in acetic acid and formic acid as major metabolic products, while propionic acid, lactic acid, and ethanol as minor products along with CO2 production. The DNA G + C content of strain CtC72T was 68.40 (mol%, Tm) and 68.05 (%, digital). Major cellular fatty acids (> 10%) were C16:0, C18:1 ω9c, and C18:1 ω9c DMA. Based on these data, we propose that strain CtC72T be classified as a novel species, Actinomyces ruminis sp. nov., under the genus Actinomyces. The type strain is CtC72T (= KCTC 15726T = JCM 32641T = MCC 3500T).


Asunto(s)
Bacterias Anaerobias , Rumen , Bovinos , Animales , ARN Ribosómico 16S/genética , Anaerobiosis , Composición de Base , Filogenia , Análisis de Secuencia de ADN , Actinomyces/genética
2.
Mar Genomics ; 59: 100864, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33810993

RESUMEN

Methanosarcina sp. strain MSH10X1, a psychrotrophic methanogen, was isolated from sub-seafloor methane hydrate deposits of Krishna Godavari Basin on India's east coast. The strain could grow from 5 to 40 °C following all three i.e. methylotrophic, acetoclastic, and hydrogenotrophic modes of methanogenesis utilizing different substrates like methanol, trimethylamine, H2/CO2 (80/20), acetate, valerate, isobutyrate, isopropanol, and isobutanol. The genome sequencing and analysis of this strain revealed a circular chromosome of 3,557,383 bp length having 42.47 mol% G + C content, which consisted of 3110 coding genes, 58 tRNA genes, and 3 rRNA operons. The KEGG analysis highlighted the presence of genes responsible for all three modes of methanogenesis. The presence of genes like mtaB, mtaC, and mttB in the genome provided evidence for possible adaptation of strain MSH10X1 in the deep sea's low-temperature conditions.


Asunto(s)
Metano , Methanosarcina , Acetatos , Composición de Base , Metanol , Methanosarcina/genética , Filogenia , ARN Ribosómico 16S
3.
Mycologia ; 112(6): 1212-1239, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32057282

RESUMEN

We isolated and characterized 65 anaerobic gut fungal (AGF; Neocallimastigomycota) strains from fecal samples of five wild (W, axis deer, white-tailed deer, Boer goat, mouflon, and Nilgiri tahr), one zoo-housed (Z, zebra), and three domesticated (D,  horse, sheep, and goat) herbivores in the US states of Texas (TX) and Oklahoma (OK), Wales (WA), and the Indian states of Kerala (KE) and Haryana (HA). Phylogenetic assessment using the D1-D2 regions of the large subunit (28S) rDNA and internal transcribed spacer 1 (ITS1) identified seven monophyletic clades that are distinct from all currently recognized AGF genera. All strains displayed monocentric thalli and produced exclusively or predominantly monoflagellate zoospores, with the exception of axis deer strains, which produced polyflagellate zoospores. Analysis of amplicon-based AGF diversity surveys indicated that zebra and horse strains are representatives of uncultured AL1 group, whereas domesticated goat and sheep strains are representatives of uncultured AL5 group, previously encountered in fecal and rumen samples of multiple herbivores. The other five lineages, all of which were isolated from wild herbivores, have not been previously encountered in such surveys. Our results significantly expand the genus-level diversity within the Neocallimastigomycota and strongly suggest that wild herbivores represent a yet-untapped reservoir of AGF diversity. We propose seven novel genera and eight novel Neocallimastigomycota species to comprise these strains, for which we propose the names Agriosomyces longus (mouflon and wild Boer goat), Aklioshbomyces papillarum (white-tailed deer), Capellomyces foraminis (wild Boar goat), and C. elongatus (domesticated goat), Ghazallomyces constrictus (axis deer), Joblinomyces apicalis (domesticated goat and sheep), Khoyollomyces ramosus (zebra-horse), and Tahromyces munnarensis (Nilgiri tahr).


Asunto(s)
Animales Domésticos/microbiología , Animales Salvajes/microbiología , Animales de Zoológico/microbiología , Herbivoria , Neocallimastigomycota/clasificación , Neocallimastigomycota/genética , Filogenia , Anaerobiosis , Animales , ADN de Hongos/genética , ADN Ribosómico/genética , Ciervos/microbiología , Heces/microbiología , Femenino , Cabras/microbiología , Herbivoria/clasificación , Caballos/microbiología , Masculino , Neocallimastigomycota/aislamiento & purificación , Ovinos/microbiología , Porcinos/microbiología
4.
MycoKeys ; (40): 89-110, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364831

RESUMEN

An extended incubation strategy to culture slow growing members of anaerobic fungi resulted in the isolation of a novel anaerobic fungus from the rumen of a goat after 15 days. The novel genus, represented by type strain G1SC, showed filamentous monocentric thallus development and produced uniflagellate zoospores, hence, showing morphological similarity to the genera Piromyces, Buwchfawromyces, Oontomyces and Pecoramyces. However, strain G1SC showed genetic similarity to the genus Anaeromyces, which, though produces uniflagellate zoospore, also exhibits polycentric thallus development. Moreover, unlike Anaeromyces, strain G1SC did not show hyphal constrictions, instead produced a branched, determinate and anucleate rhizoidal system. This fungus also displayed extensive sporangial variations, both exogenous and endogenous type of development, short and long sporangiophores and produced septate sporangia. G1SC utilised various complex and simple substrates, including rice straw and wheat straw and produced H2, CO2, formate, acetate, lactate, succinate and ethanol. Phylogenetic analysis, using internal transcribed spacer 1 (ITS1) and D1/D2 domain of large-subunit (LSU) rRNA locus, clearly showed a separate lineage for this strain, near Anaeromyces. The ITS1 based geographical distribution studies indicated detection of environmental sequences similar (93-96%) to this strain from cattle faeces. Based on morphological and molecular characterisation results of strain G1SC, we propose a novel anaerobic fungus Liebetanzomycespolymorphus gen. et sp. nov., in the phylum Neocallimastigomycota.

5.
Gut Pathog ; 6: 30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25076986

RESUMEN

BACKGROUND: The human gut microbiome is important for maintaining the health status of the host. Clostridia are key members of the human gut microbiome, carrying out several important functions in the gut environment. Hence understanding the role of different Clostridium species isolated from human gut is essential. The present study was aimed at investigating the role of novel Clostridium sp. isolate BL8 in human gut using genome sequencing as a tool. FINDINGS: The genome analysis of Clostridium sp. BL8 showed the presence of several adaptive features like bile resistance, presence of sensory and regulatory systems, presence of oxidative stress managing systems and presence of membrane transport systems. The genome of Clostridium sp. BL8 consists of a wide variety of virulence factors like phospholipase C (alpha toxin), hemolysin, aureolysin and exfoliative toxin A, as well as adhesion factors, proteases, Type IV secretion system and antibiotic resistance genes. In vitro antibiotic sensitivity testing showed that Clostridium sp. BL8 was resistant to 11 different tested antibiotics belonging to 6 different classes. The cell cytotoxicity assay confirmed the cytotoxic effect of Clostridium sp. BL8 cells, which killed 40% of the Vero cells after 4 hrs of incubation. CONCLUSIONS: Clostridium sp. BL8 has adapted for survival in human gut environment, with presence of different adaptive features. The presence of several virulence factors and cell cytotoxic activity indicate that Clostridium sp. BL8 has a potential to cause infections in humans, however further in vivo studies are necessary to ascertain this fact.

6.
J Biosci ; 37(4): 647-57, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22922190

RESUMEN

Obesity is a consequence of a complex interplay between the host genome and the prevalent obesogenic factors among the modern communities. The role of gut microbiota in the pathogenesis of the disorder was recently discovered; however, 16S-rRNA-based surveys revealed compelling but community-specific data. Considering this, despite unique diets, dietary habits and an uprising trend in obesity, the Indian counterparts are poorly studied. Here, we report a comparative analysis and quantification of dominant gut microbiota of lean, normal, obese and surgically treated obese individuals of Indian origin. Representative gut microbial diversity was assessed by sequencing fecal 16S rRNA libraries for each group (n=5) with a total of over 3000 sequences. We detected no evident trend in the distribution of the predominant bacterial phyla, Bacteroidetes and Firmicutes. At the genus level, the bacteria of genus Bacteroides were prominent among the obese individuals, which was further confirmed by qPCR (P less than 0.05). In addition, a remarkably high archaeal density with elevated fecal SCFA levels was also noted in the obese group. On the contrary, the treated-obese individuals exhibited comparatively reduced Bacteroides and archaeal counts along with reduced fecal SCFAs. In conclusion, the study successfully identified a representative microbial diversity in the Indian subjects and demonstrated the prominence of certain bacterial groups in obese individuals; nevertheless, further studies are essential to understand their role in obesity.


Asunto(s)
Bacteroides/genética , Bacteroides/aislamiento & purificación , Tracto Gastrointestinal/microbiología , Metagenoma , Obesidad/microbiología , Adulto , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Carga Bacteriana , Secuencia de Bases , Heces/microbiología , Conducta Alimentaria , Femenino , Humanos , India , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/análisis , Análisis de Secuencia de ADN , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA