Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Imaging Radiat Oncol ; 27: 100464, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37497188

RESUMEN

Background and purpose: The superior tissue contrast of magnetic resonance (MR) compared to computed tomography (CT) led to an increasing interest towards MR-only radiotherapy. For the latter, the dose calculation should be performed on a synthetic CT (sCT). Patient-specific quality assurance (PSQA) methods have not been established yet and this study aimed to assess several software-based solutions. Materials and methods: A retrospective study was performed on 20 patients treated at an MR-Linac, which were selected to evenly cover four subcategories: (i) standard, (ii) air pockets, (iii) lung and (iv) implant cases. The neural network (NN) CycleGAN was adopted to generate a reference sCT, which was then compared to four PSQA methods: (A) water override of body, (B) five tissue classes with bulk densities, (C) sCT generated by a separate NN (pix2pix) and (D) deformed CT. Results: The evaluation of the dose endpoints demonstrated that while all methods A-D provided statistically equivalent results (p = 0.05) within the 2% level for the standard cases (i), only the methods C-D guaranteed the same result over the whole cohort. The bulk densities override was shown to be a valuable method in absence of lung tissue within the beam path. Conclusion: The observations of this study suggested that the use of an additional sCT generated by a separate NN was an appropriate tool to perform PSQA of a sCT in an MR-only workflow at an MR-Linac. The time and dose endpoints requirements were respected, namely within 10 min and 2%.

2.
Phys Imaging Radiat Oncol ; 27: 100471, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37497191

RESUMEN

Background and purpose: Synthetic computed tomography (sCT) scans are necessary for dose calculation in magnetic resonance (MR)-only radiotherapy. While deep learning (DL) has shown remarkable performance in generating sCT scans from MR images, research has predominantly focused on high-field MR images. This study presents the first implementation of a DL model for sCT generation in head-and-neck (HN) cancer using low-field MR images. Specifically, the use of vision transformers (ViTs) was explored. Materials and methods: The dataset consisted of 31 patients, resulting in 196 pairs of deformably-registered computed tomography (dCT) and MR scans. The latter were obtained using a balanced steady-state precession sequence on a 0.35T scanner. Residual ViTs were trained on 2D axial, sagittal, and coronal slices, respectively, and the final sCTs were generated by averaging the models' outputs. Different image similarity metrics, dose volume histogram (DVH) deviations, and gamma analyses were computed on the test set (n = 6). The overlap between auto-contours on sCT scans and manual contours on MR images was evaluated for different organs-at-risk using the Dice score. Results: The median [range] value of the test mean absolute error was 57 [37-74] HU. DVH deviations were below 1% for all structures. The median gamma passing rates exceeded 94% in the 2%/2mm analysis (threshold = 90%). The median Dice scores were above 0.7 for all organs-at-risk. Conclusions: The clinical applicability of DL-based sCT generation from low-field MR images in HN cancer was proved. High sCT-dCT similarity and dose metric accuracy were achieved, and sCT suitability for organs-at-risk auto-delineation was shown.

3.
Phys Imaging Radiat Oncol ; 24: 173-179, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36478992

RESUMEN

Background and purpose: The requirement of computed tomography (CT) for radiotherapy planning may be bypassed by synthetic CT (sCT) generated from magnetic resonance (MR), which has recently led to the clinical introduction of MR-only radiotherapy for specific sites. Further developments are required for abdominal sCT, mostly due to the presence of mobile air pockets affecting the dose calculation. In this study we aimed to overcome this limitation for abdominal sCT at a low field (0.35 T) hybrid MR-Linac. Materials and methods: A retrospective analysis was conducted enrolling 168 patients corresponding to 215 MR-CT pairs. After the exclusion criteria, 152 volumetric images were used to train the cycle-consistent generative adversarial network (CycleGAN) and 34 to test the sCT. Image similarity metrics and dose recalculation analysis were performed. Results: The generated sCT faithfully reproduced the original CT and the location of the air pockets agreed with the MR scan. The dose calculation did not require manual bulk density overrides and the mean deviations of the dose-volume histogram dosimetric points were within 1 % of the CT, without any outlier above 2 %. The mean gamma passing rates were above 99 % for the 2 %/ 2 mm analysis and no cases below 95 % were observed. Conclusions: This study presented the implementation of CycleGAN to perform sCT generation in the abdominal region for a low field hybrid MR-Linac. The sCT was shown to correctly allocate the electron density for the mobile air pockets and the dosimetric analysis demonstrated the potential for future implementation of MR-only radiotherapy in the abdomen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA