RESUMEN
Stomatin proteins oligomerize at membranes and have been implicated in ion channel regulation and membrane trafficking. To obtain mechanistic insights into their function, we determined three crystal structures of the conserved stomatin domain of mouse stomatin that assembles into a banana-shaped dimer. We show that dimerization is crucial for the repression of acid-sensing ion channel 3 (ASIC3) activity. A hydrophobic pocket at the inside of the concave surface is open in the presence of an internal peptide ligand and closes in the absence of this ligand, and we demonstrate a function of this pocket in the inhibition of ASIC3 activity. In one crystal form, stomatin assembles via two conserved surfaces into a cylindrical oligomer, and these oligomerization surfaces are also essential for the inhibition of ASIC3-mediated currents. The assembly mode of stomatin uncovered in this study might serve as a model to understand oligomerization processes of related membrane-remodelling proteins, such as flotillin and prohibitin.
Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas de la Membrana/metabolismo , Canales Iónicos Sensibles al Ácido/química , Animales , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Dimerización , Fibroblastos , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Estructura Terciaria de Proteína , RatasRESUMEN
There are five mammalian stomatin-domain genes, all of which encode peripheral membrane proteins that can modulate ion channel function. Here we examined the ability of stomatin-like protein 1 (STOML1) to modulate the proton-sensitive members of the acid-sensing ion channel (ASIC) family. STOML1 profoundly inhibits ASIC1a, but has no effect on the splice variant ASIC1b. The inactivation time constant of ASIC3 is also accelerated by STOML1. We examined STOML1 null mutant mice with a ß-galactosidase-neomycin cassette gene-trap reporter driven from the STOML1 gene locus, which indicated that STOML1 is expressed in at least 50% of dorsal root ganglion (DRG) neurones. Patch clamp recordings from mouse DRG neurones identified a trend for larger proton-gated currents in neurones lacking STOML1, which was due to a contribution of effects upon both transient and sustained currents, at different pH, a finding consistent with an endogenous inhibitory function for STOML1.
Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Potenciales de Acción , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Ganglios Espinales/citología , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Neuronas/fisiología , Subunidades de Proteína/metabolismoRESUMEN
Neurotransmitter release is dependent on both calcium and sodium influx. Hypotonic swelling and hypertonic shrinking of neurons evokes calcium-independent exocytosis of neurotransmitters into the synaptic cleft. To date, there are not too much data available on relationship between extracellular osmolarity and sodium concentration in presynaptic endings. In the present study we investigated the effects of hypotonic swelling and hypertonic shrinking on sodium levels, as measured using fluorescent dyes SBFI-AM and Sodium Green in rat brain synaptosomes. Reduction of incubation medium osmolarity from 310 to 230 mOsm did not raise the intrasynaptosomal sodium concentration. An increase of osmolarity from 310 to 810 mOsm is accompanied by a dose-dependent elevation of sodium concentration from 8.1+/-0.5 to 46.5+/-2.8mM, respectively. This effect was insensitive to several channel inhibitors such as: tetrodotoxin, an inhibitor of voltage-gated sodium channels, bumetanide, an inhibitor of Na(+)/K(+)/2Cl(-) cotransport, gadolinium, an inhibitor of nonselective mechanosensitive channels, ruthenium red, an inhibitor of transient receptor potential channel and amiloride, an inhibitor of epithelial sodium channel/degenerin. Additionally, using the fluorescent dye BCECF-AM, we have shown that hypertonic shrinking caused a dose-dependent acidification of intrasynaptosomal cytosol, which suggests that the Na(+)/H(+) exchanger is not involved in the effect of increased osmolarity on cytosolic sodium levels. The increase in intrasynaptosomal sodium concentrations following increases in osmolarity is probably due to sodium influx through another sodium channels.
Asunto(s)
Química Encefálica/efectos de los fármacos , Soluciones Hipertónicas/farmacología , Soluciones Hipotónicas/farmacología , Sodio/metabolismo , Sinaptosomas/efectos de los fármacos , Sinaptosomas/ultraestructura , Amilorida/farmacología , Animales , Benzofuranos , Bumetanida/farmacología , Diuréticos/farmacología , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Canales Iónicos/efectos de los fármacos , Canales Iónicos/metabolismo , Masculino , Compuestos Orgánicos , Concentración Osmolar , Ácidos Ftálicos , Ratas , Ratas Wistar , Canales de Sodio/efectos de los fármacos , Canales de Sodio/metabolismo , Sacarosa/farmacología , Sinaptosomas/metabolismo , Tetrodotoxina/farmacologíaRESUMEN
The skin is equipped with specialized mechanoreceptors that allow the perception of the slightest brush. Indeed, some mechanoreceptors can detect even nanometer-scale movements. Movement is transformed into electrical signals via the gating of mechanically activated ion channels at sensory endings in the skin. The sensitivity of Piezo mechanically gated ion channels is controlled by stomatin-like protein-3 (STOML3), which is required for normal mechanoreceptor function. Here we identify small-molecule inhibitors of STOML3 oligomerization that reversibly reduce the sensitivity of mechanically gated currents in sensory neurons and silence mechanoreceptors in vivo. STOML3 inhibitors in the skin also reversibly attenuate fine touch perception in normal mice. Under pathophysiological conditions following nerve injury or diabetic neuropathy, the slightest touch can produce pain, and here STOML3 inhibitors can reverse mechanical hypersensitivity. Thus, small molecules applied locally to the skin can be used to modulate touch and may represent peripherally available drugs to treat tactile-driven pain following neuropathy.
Asunto(s)
Hipersensibilidad/metabolismo , Canales Iónicos/metabolismo , Mecanorreceptores/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Células Receptoras Sensoriales/metabolismo , Animales , Ganglios Espinales/metabolismo , Hipersensibilidad/tratamiento farmacológico , Mecanotransducción Celular/efectos de los fármacos , Mecanotransducción Celular/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Piel/inervación , Tacto/fisiologíaRESUMEN
It is well established that calcium-dependent neurotransmitter release and exocytosis can be regulated by altering the cholesterol content of the plasma membrane. We have compared the influence of cholesterol depletion of synaptosomal plasma membrane by 15 mM methyl-beta-cyclodextrin (MCD) treatment on calcium-dependent release of D-[(3)H]aspartate induced by the calcium ionophore A23187 and on calcium-independent release induced by hypertonic shrinking or polyvalent cations. We found that decrease of cholesterol concentration by 9.3% inhibited calcium-dependent release of d-[(3)H]aspartate induced by calcium ionophore A23187 by four times while release induced by 300 microM Gd(3+), 150 mM and 500 mM sucrose remained unchanged. Further we have investigated the influence of MCD on exocytosis monitored by the fluorescent dye, acridine orange. Cholesterol depletion inhibited calcium-dependent exocytosis induced by calcium ionophore A23187 but had virtually no influence on calcium-independent exocytosis induced by hypertonic shrinking or Gd(3+). In summary, we found that the cholesterol content in synaptosomal plasma membrane is important for calcium-dependent exocytosis.
Asunto(s)
Encéfalo/metabolismo , Calcio/fisiología , Colesterol/metabolismo , Exocitosis , Sinaptosomas/metabolismo , Naranja de Acridina , Animales , Ácido Aspártico/metabolismo , Calcimicina/farmacología , Membrana Celular/metabolismo , Colorantes Fluorescentes , Gadolinio/farmacología , Soluciones Hipertónicas/farmacología , Técnicas In Vitro , Ionóforos/farmacología , Masculino , Ratas , Ratas Wistar , beta-Ciclodextrinas/farmacologíaRESUMEN
In sensory neurons, mechanotransduction is sensitive, fast and requires mechanosensitive ion channels. Here we develop a new method to directly monitor mechanotransduction at defined regions of the cell-substrate interface. We show that molecular-scale (~13 nm) displacements are sufficient to gate mechanosensitive currents in mouse touch receptors. Using neurons from knockout mice, we show that displacement thresholds increase by one order of magnitude in the absence of stomatin-like protein 3 (STOML3). Piezo1 is the founding member of a class of mammalian stretch-activated ion channels, and we show that STOML3, but not other stomatin-domain proteins, brings the activation threshold for Piezo1 and Piezo2 currents down to ~10 nm. Structure-function experiments localize the Piezo modulatory activity of STOML3 to the stomatin domain, and higher-order scaffolds are a prerequisite for function. STOML3 is the first potent modulator of Piezo channels that tunes the sensitivity of mechanically gated channels to detect molecular-scale stimuli relevant for fine touch.
Asunto(s)
Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Proteínas de la Membrana/metabolismo , Modelos Neurológicos , Proteínas del Tejido Nervioso/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Biofisica , Cartilla de ADN/genética , Ganglios Espinales/citología , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Rastreo , Técnicas de Placa-Clamp , Estimulación Física , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estadísticas no ParamétricasRESUMEN
A complex of stomatin-family proteins and acid-sensing (proton-gated) ion channel (ASIC) family members participate in sensory transduction in invertebrates and vertebrates. Here, we have examined the role of the stomatin-family protein stomatin-like protein-3 (STOML3) in this process. We demonstrate that STOML3 interacts with stomatin and ASIC subunits and that this occurs in a highly mobile vesicle pool in dorsal root ganglia (DRG) neurons and Chinese hamster ovary cells. We identify a hydrophobic region in the N-terminus of STOML3 that is required for vesicular localization of STOML3 and regulates physical and functional interaction with ASICs. We further characterize STOML3-containing vesicles in DRG neurons and show that they are Rab11-positive, but not part of the early-endosomal, lysosomal or Rab14-dependent biosynthetic compartment. Moreover, uncoupling of vesicles from microtubules leads to incorporation of STOML3 into the plasma membrane and increased acid-gated currents. Thus, STOML3 defines a vesicle pool in which it associates with molecules that have critical roles in sensory transduction. We suggest that the molecular features of this vesicular pool may be characteristic of a 'transducosome' in sensory neurons.
Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Proteínas Sanguíneas/metabolismo , Ganglios Espinales/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Receptoras Sensoriales/metabolismo , Vesículas Transportadoras/metabolismo , Canales Iónicos Sensibles al Ácido/genética , Animales , Proteínas Sanguíneas/genética , Células CHO , Cricetinae , Cricetulus , Ganglios Espinales/citología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Proteínas del Tejido Nervioso/genética , Estructura Terciaria de Proteína , Células Receptoras Sensoriales/citología , Vesículas Transportadoras/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismoRESUMEN
Acid evokes pain by exciting nociceptors; the acid sensors are proton-gated ion channels that depolarize neurons. The naked mole-rat (Heterocephalus glaber) is exceptional in its acid insensitivity, but acid sensors (acid-sensing ion channels and the transient receptor potential vanilloid-1 ion channel) in naked mole-rat nociceptors are similar to those in other vertebrates. Acid inhibition of voltage-gated sodium currents is more profound in naked mole-rat nociceptors than in mouse nociceptors, however, which effectively prevents acid-induced action potential initiation. We describe a species-specific variant of the nociceptor sodium channel Na(V)1.7, which is potently blocked by protons and can account for acid insensitivity in this species. Thus, evolutionary pressure has selected for an Na(V)1.7 gene variant that tips the balance from proton-induced excitation to inhibition of action potential initiation to abolish acid nociception.
Asunto(s)
Ácidos/farmacología , Ratas Topo/fisiología , Nocicepción/fisiología , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Ácidos/metabolismo , Potenciales de Acción , Secuencias de Aminoácidos , Animales , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Ratones , Ratas Topo/genética , Canal de Sodio Activado por Voltaje NAV1.7 , Proteínas del Tejido Nervioso/metabolismo , Ratas , Canales de Sodio/genética , Canales Catiónicos TRPV/metabolismoRESUMEN
Polyvalent cations and hypertonic shrinking of presynaptic endings lead to calcium-independent exocytosis in various synapses. In the present study we have investigated the contribution of integrins to this phenomenon. It was found that hypertonic shrinking, polyvalent cations ruthenium red and gadolinium results in dose-dependent calcium-independent neurotransmitter release in rat brain synaptosomes. The exocytotic mechanism of neurotransmitter release induced by 300 microM gadolinium was additionally verified by the fluorescent dye FM2-10. We found that 200 microM of RGDS peptide, an inhibitor of integrins, decreased polyvalent gadolinium-induced [3H]D: -aspartate release by 26%. This compound had no effect upon hypertonicity-induced release. The peptide RGES, a negative control for RGDS; genistein, an inhibitor of tyrosine kinases; and citrate, an inhibitor of lanthanides-induced aggregation were ineffective in both cases. Therefore, we have shown that integrins did not influence hypertonicity-evoked [3H]D: -aspartate release, but partially mediated that evoked by gadolinium ions.