Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vaccines (Basel) ; 10(9)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36146524

RESUMEN

This review describes key aspects of the development of the rVSVΔG-ZEBOV-GP Ebola vaccine and key activities which are continuing to further expand our knowledge of the product. Extensive partnerships and innovative approaches were used to address the various challenges encountered during this process. The rVSVΔG-ZEBOV-GP Ebola vaccine was initially approved by the European Medicines Agency and prequalified by the World Health Organization in November 2019. It was approved by the United States Food and Drug Administration in December 2019 and approved in five African countries within 90 days of prequalification. The development resulted in the first stockpile of a registered Ebola vaccine that is available to support outbreak response. This also provides insights into how the example of rVSVΔG-ZEBOV-GP can inform the development of vaccines for Sudan ebolavirus, Marburg virus, and other emerging epidemic diseases in terms of the types of approaches and data needed to support product registration, availability, and the use of a filovirus vaccine.

2.
Vaccines (Basel) ; 8(4)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352786

RESUMEN

rVSVΔG-ZEBOV-GP is a live, attenuated, recombinant vesicular stomatitis virus (rVSV)-based vaccine for the prevention of Ebola virus disease caused by Zaire ebolavirus. As a replication-competent genetically modified organism, rVSVΔG-ZEBOV-GP underwent various environmental evaluations prior to approval, the most in-depth being the environmental risk assessment (ERA) required by the European Medicines Agency. This ERA, as well as the underlying methodology used to arrive at a sound conclusion about the environmental risks of rVSVΔG-ZEBOV-GP, are described in this review. Clinical data from vaccinated adults demonstrated only infrequent, low-level shedding and transient, low-level viremia, indicating a low person-to-person infection risk. Animal data suggest that it is highly unlikely that vaccinated individuals would infect animals with recombinant virus vaccine or that rVSVΔG-ZEBOV-GP would spread within animal populations. Preclinical studies in various hematophagous insect vectors showed that these species were unable to transmit rVSVΔG-ZEBOV-GP. Pathogenicity risk in humans and animals was found to be low, based on clinical and preclinical data. The overall risk for non-vaccinated individuals and the environment is thus negligible and can be minimized further through defined mitigation strategies. This ERA and the experience gained are relevant to developing other rVSV-based vaccines, including candidates under investigation for prevention of COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA