Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35163902

RESUMEN

By-products from fruits and are of great interest for their potential use in the food industry due to their high content of bioactive compounds. Herein, we examined the ultrasound-assisted extraction (UAE) of carotenoid and carotenoid esters from papaya pulp and peel using soybean oil and sunflower oil as alternative green solvents. Response surface methodology (RSM) was established to optimize the UAE process. Three independent variables, ultrasonic amplitude (20-60%), time (10-60 min), and co-solvent percentage (ethanol) (5-20%, v/v), were applied. The highest total carotenoid content in the UAE extracts was obtained from papaya pulp extracts (58.7 ± 1.6 and 56.0 ± 1.5 µg carotenoids/g oil) using soybean oil and sunflower oil, respectively (60% amplitude/ 10 min/ 20% ethanol). On the other hand, the highest carotenoid content (52.0 ± 0.9 µg carotenoids/g oil) was obtained from papaya peel using soybean oil applying the UAE process (20% amplitude/ 77 min/ 20% ethanol); a minor content of 39.3 ± 0.5 µg carotenoids/g oil was obtained from papaya peel using sunflower oil at 60% amplitude/ 60 min/ 5% ethanol. Lycopene was the most abundant carotenoid among all individual carotenoids observed in papaya oil extracts, obtaining the highest yields of this carotenoid when papaya pulp and peel were extracted using soybean oil (94% and 81%, respectively) and sunflower oil (95% and 82%, respectively). Great extraction of xanthophyll esters was detected using 20% of ethanol in the vegetable oil extraction solvent (v/v). High correlations (>0.85) was obtained between total carotenoid content and color determination in the UAE oil extracts. UAE vegetable oil extracts enriched with carotenoids from papaya by-products could be useful to formulate new food ingredients based on emulsions with interesting potential health benefits.


Asunto(s)
Carica , Carotenoides/análisis , Frutas/química , Aceites de Plantas , Verduras
2.
Foods ; 12(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37509746

RESUMEN

The aim of the present work was to improve the stability and bioaccessibility of carotenoids from green oil extracts obtained from papaya by-products using oil-in-water (O/W) emulsions. The effects of different concentrations of pectin (1%, 2%, and 3%), a high-molecular-size emulsifier, together with Tween 20, a low-molecular-size emulsifier, high-speed homogenization conditions (time: 2, 3, 4, and 5 min; rpm: 9500, 12,000, 14,000, and 16,000 rpm), and high-pressure homogenization (HPH) (100 MPa for five cycles) were evaluated to determine the optimal conditions for obtaining O/W stable emulsions with encapsulated carotenoids. Soybean, sunflower, and coconut oils were used to formulate these O/W emulsions. The bioaccessibility of the main individual encapsulated papaya carotenoids was evaluated using the INFOGEST digestion methodology. In addition, the microstructures (confocal and optical microscopy) of the O/W carotenoid emulsions and their behavior during in vitro digestion phases were studied. Sunflower O/W carotenoid emulsions showed smaller mean particle size, higher negative ζ-potential, and higher viscosity than soybean O/W emulsions. Particle size reduction in the O/W emulsions using the HPH process improved the bioaccessibility of papaya encapsulated carotenoids. In these O/W emulsions, depending on the vegetable oil, lycopene was the carotenoid with the highest bioaccessibility (71-64%), followed by (all-E)-ß-carotene (18%), (all-E)-ß-cryptoxanthin (15%), and (all-E)-ß-cryptoxanthin laurate (7-4%). These results highlight the potential of using green carotenoid papaya extracts to formulate O/W emulsions to enhance carotenoid bioactivity by efficiently preventing degradation and increasing in vitro bioaccessibility.

3.
Foods ; 10(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681484

RESUMEN

High hydrostatic pressure (HHP) is a non-thermal technology widely used in the industry to extend food shelf-life and it has been proven to enhance the extractability of secondary metabolites, such as carotenoids, in plant foods. In this study, fresh-cut papaya pulp of varieties (Sweet Mary, Alicia and Eksotika) from the Canary Islands (Spain) were submitted to the HHP process (pressure: 100, 350 and 600 MPa; time: come-up time (CUT) and 5 min) to evaluate, for the first time, individual carotenoid and carotenoid ester extractability and to assess their bioaccessibility using an in vitro simulated gastrointestinal digestion assay, following the standardized INFOGEST® methodology. In addition, changes in papaya pulp microstructure after HHP treatments and during the different phases of the in vitro digestion were evaluated with optical light microscopy. HPLC-DAD (LC-MS/MS (APCI+)) analyses revealed that HHP treatments increased the carotenoid content, obtaining the highest extractability in pulp of the Sweet Mary papaya variety treated at 350 MPa during 5 min (4469 ± 124 µg/100 g fresh weight) which was an increase of 269% in respect to the HHP-untreated control sample. The highest carotenoid extraction value within each papaya variety among all HHP treatments was observed for (all-E)-lycopene, in a range of 98-1302 µg/100 g fresh weight (23-344%). Light micrographs of HHP-treated pulps showed many microstructural changes associated to carotenoid release related to the observed increase in their content. Carotenoids and carotenoid esters of papaya pulp submitted to in vitro digestion showed great stability; however, their bioaccessibility was very low due to the low content of fatty acids in papaya pulp necessary for the micellarization process. Further studies will be required to improve papaya carotenoid and carotenoid ester bioaccessibility.

4.
Foods ; 10(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671129

RESUMEN

The carotenoid profile of non-saponified and saponified extracts of different tissues (pulp and peel) of fruits of three new papaya varieties, Sweet Mary, Alicia, and Eksotika, was characterized for the first time, and almost all carotenoid compounds were quantified. Carotenoids and carotenoid esters were analyzed and characterized using HPLC-photo diode array (PDA-MS with atmospheric pressure chemical ionization with positive ion mode (APCI+) with a C30 reversed-phase column. The carotenoid deposition in collenchyma and chlorenchyma cells of papaya pulp and peel tissues was assessed by optical microscopy, confocal laser scanning microscopy, and transmission electron microscopy. The most abundant carotenoids in the fruit of the three papaya varieties (pulp and peel) were (all-E)-lycopene (230.0-421.2 µg/100 g fresh weight), (all-E)-ß-carotene (120.3-233.2 µg/100 g fresh weight), and (all-E)-ß-cryptoxanthin laurate (74.4-223.2 µg/100 g fresh weight. Moreover, high concentrations of (all-E)-lutein (922.5-1381.1 µg/100 g fresh weight) and its esters, such as (all-E)-lutein-3-O-myristate and (all-E)-lutein dimyristate, were found in peel extracts. The optical microscopy study of papaya pulps showed that carotenoid deposition in all papaya varieties, including Maradol, was mainly localized close to the cell walls, showing the presence of some crystalloids and round-shaped structures, with different sizes and distribution due to the different carotenoid content among varieties. No crystalloids or globular depositions were found in any of the peel sections, and no remarkable differences were found in the papaya peel microstructure of the different papaya varieties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA