Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 9620, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688859

RESUMEN

Species Distribution Models are commonly used with surface dynamic environmental variables as proxies for prey distribution to characterise marine top predator habitats. For oceanic species that spend lot of time at depth, surface variables might not be relevant to predict deep-dwelling prey distributions. We hypothesised that descriptors of deep-water layers would better predict the deep-diving cetacean distributions than surface variables. We combined static variables and dynamic variables integrated over different depth classes of the water column into Generalised Additive Models to predict the distribution of sperm whales Physeter macrocephalus and beaked whales Ziphiidae in the Bay of Biscay, eastern North Atlantic. We identified which variables best predicted their distribution. Although the highest densities of both taxa were predicted near the continental slope and canyons, the most important variables for beaked whales appeared to be static variables and surface to subsurface dynamic variables, while for sperm whales only surface and deep-water variables were selected. This could suggest differences in foraging strategies and in the prey targeted between the two taxa. Increasing the use of variables describing the deep-water layers would provide a better understanding of the oceanic species distribution and better assist in the planning of human activities in these habitats.


Asunto(s)
Cachalote , Ballenas , Animales , Bahías , Ecosistema , Océanos y Mares , Agua
2.
J Exp Biol ; 214(Pt 4): 538-45, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21270301

RESUMEN

There is currently a great deal of interest in using stable isotope methods to investigate diet, trophic level and migration in wild cetaceans. In order to correctly interpret the results stemming from these methods, it is crucial to understand how diet isotopic values are reflected in consumer tissues. In this study, we investigated patterns of isotopic discrimination between diet and blood constituents of two species of cetaceans (killer whale, Orcinus orca, and bottlenose dolphin, Tursiops truncatus) fed controlled diets over 308 and 312 days, respectively. Diet discrimination factors (Δ; mean ± s.d.) for plasma were estimated to Δ(13)C=2.3±0.6‰ and Δ(15)N=1.8±0.3‰, respectively, for both species and to Δ(13)C=2.7±0.3‰ and Δ(15)N=0.5±0.1‰ for red blood cells. Delipidation did not have a significant effect on carbon and nitrogen isotopic values of blood constituents, confirming that cetacean blood does not serve as a reservoir of lipids. In contrast, carbon isotopic values were higher in delipidated samples of blubber, liver and muscle from killer whales. The potential for conflict between fisheries and cetaceans has heightened the need for trophic information about these taxa. These results provide the first published stable isotope incorporation data for cetaceans, which are essential if conclusions are to be drawn on issues concerning trophic structures, carbon sources and diet reconstruction.


Asunto(s)
Delfín Mular/metabolismo , Isótopos de Carbono/sangre , Dieta , Marcaje Isotópico/métodos , Isótopos de Nitrógeno/sangre , Orca/metabolismo , Tejido Adiposo/metabolismo , Análisis de Varianza , Animales , Isótopos de Carbono/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Isótopos de Nitrógeno/metabolismo , Especificidad de la Especie
3.
PLoS One ; 16(8): e0255667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34347854

RESUMEN

In habitat modelling, environmental variables are assumed to be proxies of lower trophic levels distribution and by extension, of marine top predator distributions. More proximal variables, such as potential prey fields, could refine relationships between top predator distributions and their environment. In situ data on prey distributions are not available over large spatial scales but, a numerical model, the Spatial Ecosystem And POpulation DYnamics Model (SEAPODYM), provides simulations of the biomass and production of zooplankton and six functional groups of micronekton at the global scale. Here, we explored whether generalised additive models fitted to simulated prey distribution data better predicted deep-diver densities (here beaked whales Ziphiidae and sperm whales Physeter macrocephalus) than models fitted to environmental variables. We assessed whether the combination of environmental and prey distribution data would further improve model fit by comparing their explanatory power. For both taxa, results were suggestive of a preference for habitats associated with topographic features and thermal fronts but also for habitats with an extended euphotic zone and with large prey of the lower mesopelagic layer. For beaked whales, no SEAPODYM variable was selected in the best model that combined the two types of variables, possibly because SEAPODYM does not accurately simulate the organisms on which beaked whales feed on. For sperm whales, the increase model performance was only marginal. SEAPODYM outputs were at best weakly correlated with sightings of deep-diving cetaceans, suggesting SEAPODYM may not accurately predict the prey fields of these taxa. This study was a first investigation and mostly highlighted the importance of the physiographic variables to understand mechanisms that influence the distribution of deep-diving cetaceans. A more systematic use of SEAPODYM could allow to better define the limits of its use and a development of the model that would simulate larger prey beyond 1,000 m would probably better characterise the prey of deep-diving cetaceans.


Asunto(s)
Distribución Animal/fisiología , Buceo/fisiología , Conducta Alimentaria/fisiología , Conducta Predatoria/fisiología , Cachalote/fisiología , Animales , Biomasa , Ecosistema , Océanos y Mares , Zooplancton/fisiología
4.
Mar Pollut Bull ; 62(5): 1058-65, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21435669

RESUMEN

Risso's dolphins, pilot whales and sperm whales rarely strand in the northwestern Mediterranean. Thus, their feeding ecology, through the analysis of stomach contents, is poorly known. The aim of this study was to gain further insight into the segregation/superposition of the diet and habitat of Risso's dolphins, pilot whales and sperm whales using chemical tracers, namely, stable isotopes (δ(13)C, δ(15)N) and organochlorines. Significantly different δ(15)N values were obtained in Risso's dolphins (11.7±0.7‰), sperm whales (10.8±0.3‰) and pilot whales (9.8±0.3‰), revealing different trophic levels. These differences are presumably due to various proportions of Histioteuthidae cephalopods in each toothed whale's diet. Similar δ(13)C contents between species indicated long-term habitat superposition or corroborated important seasonal migrations. Lower congener 180 concentrations (8.20 vs. 21.73 µg.g(-1) lw) and higher tDDT/tPCB ratios (0.93 vs. 0.42) were observed in sperm whales compared with Risso's dolphins and may indicate wider migrations for the former. Therefore, competition between these species seems to depend on different trophic levels and migration patterns.


Asunto(s)
Delfines , Contenido Digestivo/química , Hidrocarburos Clorados/análisis , Cachalote , Contaminantes Químicos del Agua/análisis , Animales , Radioisótopos de Carbono/análisis , DDT/análisis , Dieta , Monitoreo del Ambiente/métodos , Femenino , Cadena Alimentaria , Masculino , Mar Mediterráneo , Radioisótopos de Nitrógeno/análisis , Bifenilos Policlorados/análisis , Calderón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA