Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; 23(11): e202200071, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35362650

RESUMEN

ß-Nicotinamide mononucleotide (NMN) has recently gained attention for a nutritional supplement because it is an intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD+ ). In this study, we developed NMN synthesis by coupling two modules. The first module is to culture E. coli MG1655 ▵tktA ▵tktB ▵ptsG to metabolize xylose to generate D-ribose in the medium. The supernatant containing D-ribose was applied in the second module which is composed of EcRbsK-EcPRPS-CpNAMPT reaction to synthesize NMN, that requires additional enzymes of CHU0107 and EcPPase to remove feedback inhibitors ADP and pyrophosphate. The second module can be rapidly optimized by comparing NMN production determined by the cyanide assay. Finally, 10 mL optimal biocascade reaction generated NMN with a good yield of 84 % from 1 mM D-ribose supplied from the supernatant of E. coli MG1655 ▵tktA ▵tktB ▵ptsG. Our results can further guide researchers to metabolically engineer E. coli for NMN synthesis.


Asunto(s)
Mononucleótido de Nicotinamida , Xilosa , Escherichia coli/genética , Escherichia coli/metabolismo , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Nucleótidos/metabolismo , Ribosa , Xilosa/metabolismo
2.
Plant Cell Physiol ; 61(6): 1054-1063, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32163155

RESUMEN

The expression of AtSUC1 is controlled by the promoter and intragenic sequences. AtSUC1 is expressed in roots, pollen and trichomes. However, AtSUC1 promoter-GUS transgenics only show expression in trichomes and pollen. Here, we show that the root expression of AtSUC1 is controlled by an interaction between the AtSUC1 promoter and two short introns. The deletion of either intron from whole-gene-GUS constructs results in no root expression, showing that both introns are required. The two introns in tandem, fused to GUS, produce high constitutive expression throughout the vegetative parts of the plant. When combined with the promoter, the expression driven by the introns is reduced and localized to the roots. In Arabidopsis seedlings, exogenously applied sucrose induces the expression of AtSUC1 in roots and causes anthocyanin accumulation. atsuc1 loss-of-function mutants are defective in sucrose-induced anthocyanin accumulation. We show that an AtSUC1 whole-gene-GUS construct expressing a nonfunctional AtSUC1 (D152N) mutant, that is transport inactive, is defective in sucrose-induced AtSUC1 expression when expressed in an atsuc1-null background. We also show that the transport-defective allele does not complement the loss of sucrose-induced anthocyanin accumulation in null atsuc1 mutants. The results indicate that sucrose uptake via AtSUC1 is required for sucrose-induced AtSUC1 expression and sucrose-induced anthocyanin accumulation and that the site for sucrose detection is intracellular.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Intrones , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Intrones/fisiología , Proteínas de Transporte de Membrana/fisiología , Organismos Modificados Genéticamente , Proteínas de Plantas/fisiología , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas/fisiología , Plantones/metabolismo , Sacarosa/metabolismo , Xenopus
3.
J Am Soc Mass Spectrom ; 35(3): 542-550, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38310603

RESUMEN

Automation is dramatically changing the nature of laboratory life science. Robotic lab hardware that can perform manual operations with greater speed, endurance, and reproducibility opens an avenue for faster scientific discovery with less time spent on laborious repetitive tasks. A major bottleneck remains in integrating cutting-edge laboratory equipment into automated workflows, notably specialized analytical equipment, which is designed for human usage. Here we present AutonoMS, a platform for automatically running, processing, and analyzing high-throughput mass spectrometry experiments. AutonoMS is currently written around an ion mobility mass spectrometry (IM-MS) platform and can be adapted to additional analytical instruments and data processing flows. AutonoMS enables automated software agent-controlled end-to-end measurement and analysis runs from experimental specification files that can be produced by human users or upstream software processes. We demonstrate the use and abilities of AutonoMS in a high-throughput flow-injection ion mobility configuration with 5 s sample analysis time, processing robotically prepared chemical standards and cultured yeast samples in targeted and untargeted metabolomics applications. The platform exhibited consistency, reliability, and ease of use while eliminating the need for human intervention in the process of sample injection, data processing, and analysis. The platform paves the way toward a more fully automated mass spectrometry analysis and ultimately closed-loop laboratory workflows involving automated experimentation and analysis coupled to AI-driven experimentation utilizing cutting-edge analytical instrumentation. AutonoMS documentation is available at https://autonoms.readthedocs.io.


Asunto(s)
Metabolómica , Programas Informáticos , Humanos , Reproducibilidad de los Resultados , Espectrometría de Masas , Automatización
4.
J Ethnopharmacol ; 151(2): 858-63, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24316176

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisinin (AN) is produced by Artemisia annua, a medicinal herb long used as a tea infusion in traditional Chinese medicine to treat fever; it is also the key ingredient in current artemisinin-based combination therapies (ACTs) effective in treating malaria. Recently we showed that dried leaves from the whole plant Artemisia annua that produces artemisinin and contains artemisinin-synergistic flavonoids seem to be more effective and less costly than ACT oral malaria therapy; however little is known about how digestion affects release of artemisinin and flavonoids from dried leaves. MATERIAL AND METHODS: In the current study we used a simulated digestion system to determine how artemisinin and flavonoids are released prior to absorption into the bloodstream. Various delivery methods and staple foods were combined with dried leaves for digestion in order to investigate their impact on the bioavailability of artemisinin and flavonoids. Digestate was recovered at the end of the oral, gastric, and intestinal stages, separated into solid and liquid fractions, and extracted for measurement of artemisinin and total flavonoids. RESULTS: Compared to unencapsulated digested dried leaves, addition of sucrose, various cooking oils, and rice did not reduce the amount of artemisinin released in the intestinal liquid fraction, but the amount of released flavonoids nearly doubled. When dried leaves were encapsulated into either hydroxymethylcellulose or gelatin capsules, there was >50% decrease in released artemisinin but no change in released flavonoids. In the presence of millet or corn meal, the amount of released artemisinin declined, but there was no change in released flavonoids. Use of a mutant Artemisia annua lacking artemisinin showed that the plant matrix is critical in determining how artemisinin is affected during the digestion process. CONCLUSIONS: This study provides evidence showing how both artemisinin and flavonoids are affected by digestion and dietary components for an orally consumed plant delivered therapeutic and that artemisinin delivered via dried leaves would likely be more bioavailable if provided as a tablet instead of a capsule.


Asunto(s)
Antimaláricos/farmacocinética , Artemisia annua , Artemisininas/farmacocinética , Flavonoides/farmacocinética , Hojas de la Planta , Antimaláricos/administración & dosificación , Artemisininas/administración & dosificación , Disponibilidad Biológica , Cápsulas , Suplementos Dietéticos , Digestión , Grano Comestible , Flavonoides/administración & dosificación , Interacciones Alimento-Droga , Mucosa Gástrica/metabolismo , Mucosa Intestinal/metabolismo , Malaria/tratamiento farmacológico , Malaria/metabolismo , Aceites de Plantas , Sacarosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA