Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Biomater ; 4(3): 577-86, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18165164

RESUMEN

The aim of the study was to investigate the role of microstructure and porosity on the mechanical behaviour of sintered hydroxyapatite. Hydroxyapatite disks with four different porosities were used in this investigation. With a nanoindentation system, elastic modulus, hardness, contact stress-strain relationship, energy absorption and indentation creep behaviour were investigated. The elastic modulus and hardness of hydroxyapatite exhibited an exponential relationship (e(-bP)) with the porosity P, which is similar to Rice's finding with the minimum solid area model. High porosity samples showed more substantial inelastic behaviour, including higher energy absorption, no linear elastic region in the contact stress-strain curve and some indentation creep behaviour. We conclude that porous microstructure endows hydroxyapatite with inelastic deformation properties, which are important in a material for bone substitution usage.


Asunto(s)
Durapatita/química , Absorción , Elasticidad , Dureza , Microscopía Electrónica de Rastreo , Porosidad , Termodinámica
2.
J Nanosci Nanotechnol ; 8(8): 3936-41, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19049154

RESUMEN

The mechanical properties of pure synthetic hydroxyapatite and hydroxyapatite-carbon nanotube composites were examined. Vickers microhardness and nanoindentation using a Berkovich tipped indenter were used to determine the hardness, fracture toughness and Young's modulus of the pure hydroxyapatite matrix and the composite materials. Microscopy showed that for the composites produced the carbon nanotubes were present as discrete clumps. These clumps induced a detrimental effect on the hardness of the materials, while the fracture toughness values were not affected. This would be undesirable in terms of using the material for biomedical implant applications. It should be noted that the carbon nanotubes used contained free graphite. As the properties of the composite materials studied were not greatly improved over the matrix, it is speculated that if the graphite phase were removed from the reagent, this could in-turn enhance the properties of the material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA