RESUMEN
Although hyponatremia and salt wasting are common in patients with HIV/AIDS, the understanding of their contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the distal tubules and on the expression level of the Slc12a3 gene, encoding the sodium-chloride cotransporter (which is responsible for sodium reabsorption in distal nephron segments), single-nucleus RNA sequencing was performed on kidney cortices from three wild-type (WT) and three Vpr transgenic (Vpr Tg) mice. The percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05); in Vpr Tg mice, Slc12a3 expression was not significantly different in DCT cells. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with those in WT mice (P < 0.01). Immunohistochemistry revealed fewer Slc12a3+Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis between Vpr Tg and WT samples in the DCT cluster showed down-regulation of the Ier3 gene, which is an inhibitor of apoptosis. The in vitro knockdown of Ier3 by siRNA transfection induced apoptosis in mouse DCT cells. These observations suggest that the salt-wasting effect of Vpr in Vpr Tg mice is likely mediated by Ier3 down-regulation in DCT1 cells and loss of Slc12a3+Pvalb+ DCT1 segments.
Asunto(s)
Túbulos Renales Distales , Ratones Transgénicos , Análisis de Secuencia de ARN , Animales , Túbulos Renales Distales/metabolismo , Túbulos Renales Distales/patología , Ratones , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Nefropatía Asociada a SIDA/patología , Nefropatía Asociada a SIDA/genética , Nefropatía Asociada a SIDA/metabolismo , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
[Figure: see text].
Asunto(s)
Apolipoproteína L1/genética , Negro o Afroamericano/genética , Enfermedad de la Arteria Coronaria/genética , Trombosis Coronaria/genética , Variación Genética , Placa Aterosclerótica , Adulto , Autopsia , Causas de Muerte , Enfermedad de la Arteria Coronaria/etnología , Enfermedad de la Arteria Coronaria/mortalidad , Enfermedad de la Arteria Coronaria/patología , Trombosis Coronaria/etnología , Trombosis Coronaria/mortalidad , Trombosis Coronaria/patología , Muerte Súbita Cardíaca/etnología , Muerte Súbita Cardíaca/patología , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Masculino , Maryland/epidemiología , Persona de Mediana Edad , Necrosis , Fenotipo , Sistema de Registros , Medición de Riesgo , Factores de Riesgo , Rotura EspontáneaRESUMEN
HIV disease remains prevalent in the USA and chronic kidney disease remains a major cause of morbidity in HIV-1-positive patients. Host double-stranded RNA (dsRNA)-activated protein kinase (PKR) is a sensor for viral dsRNA, including HIV-1. We show that PKR inhibition by compound C16 ameliorates the HIV-associated nephropathy (HIVAN) kidney phenotype in the Tg26 transgenic mouse model, with reversal of mitochondrial dysfunction. Combined analysis of single-nucleus RNA-seq and bulk RNA-seq data revealed that oxidative phosphorylation was one of the most downregulated pathways and identified signal transducer and activator of transcription (STAT3) as a potential mediating factor. We identified in Tg26 mice a novel proximal tubular cell cluster enriched in mitochondrial transcripts. Podocytes showed high levels of HIV-1 gene expression and dysregulation of cytoskeleton-related genes, and these cells dedifferentiated. In injured proximal tubules, cell-cell interaction analysis indicated activation of the pro-fibrogenic PKR-STAT3-platelet-derived growth factor (PDGF)-D pathway. These findings suggest that PKR inhibition and mitochondrial rescue are potential novel therapeutic approaches for HIVAN.
Asunto(s)
Nefropatía Asociada a SIDA , Ratones Transgénicos , Mitocondrias , eIF-2 Quinasa , Animales , Humanos , Ratones , Nefropatía Asociada a SIDA/genética , Nefropatía Asociada a SIDA/metabolismo , Nefropatía Asociada a SIDA/patología , Modelos Animales de Enfermedad , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , VIH-1/genética , VIH-1/fisiología , Mitocondrias/metabolismo , Podocitos/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genéticaRESUMEN
Introduction: The mechanisms in podocytes that mediate the pathologic effects of the APOL1 high-risk (HR) variants remain incompletely understood, although various molecular and cellular mechanisms have been proposed. We previously established conditionally immortalized human urine-derived podocyte-like epithelial cell (HUPEC) lines to investigate APOL1 HR variant-induced podocytopathy. Methods: We conducted comprehensive transcriptomic analysis, including mRNA, microRNA (miRNA), and transfer RNA fragments (tRFs), to characterize the transcriptional profiles in undifferentiated and differentiated HUPEC with APOL1 HR (G1/G2, 2 cell lines) and APOL1 low-risk (LR) (G0/G0, 2 cell lines) genotypes. We reanalyzed single-cell RNA-seq data from urinary podocytes from focal segmental glomerulosclerosis (FSGS) subjects to characterize the effect of APOL1 genotypes on podocyte transcriptomes. Results: Differential expression analysis showed that the ribosomal pathway was one of the most enriched pathways, suggesting that altered function of the translation initiation machinery may contribute to APOL1 variant-induced podocyte injury. Expression of genes related to the elongation initiation factor 2 pathway was also enriched in the APOL1 HR urinary podocytes from single-cell RNA-seq, supporting a prior report on the role of this pathway in APOL1-associated cell injury. Expression of microRNA and tRFs were analyzed, and the profile of small RNAs differed by both differentiation status and APOL1 genotype. Conclusion: We have profiled the transcriptomic landscape of human podocytes, including mRNA, miRNA, and tRF, to characterize the effects of differentiation and of different APOL1 genotypes. The candidate pathways, miRNAs, and tRFs described here expand understanding of APOL1-associated podocytopathies.
RESUMEN
APOL1 high-risk variants partially explain the high kidney disease prevalence among African ancestry individuals. Many mechanisms have been reported in cell culture models, but few have been demonstrated in mouse models. Here we characterize two models: (1) HIV-associated nephropathy (HIVAN) Tg26 mice crossed with bacterial artificial chromosome (BAC)/APOL1 transgenic mice and (2) interferon-γ administered to BAC/APOL1 mice. Both models showed exacerbated glomerular disease in APOL1-G1 compared to APOL1-G0 mice. HIVAN model glomerular bulk RNA-seq identified synergistic podocyte-damaging pathways activated by the APOL1-G1 allele and by HIV transgenes. Single-nuclear RNA-seq revealed podocyte-specific patterns of differentially-expressed genes as a function of APOL1 alleles. Eukaryotic Initiation factor-2 pathway was the most activated pathway in the interferon-γ model and the most deactivated pathway in the HIVAN model. HIVAN mouse model podocyte single-nuclear RNA-seq data showed similarity to human focal segmental glomerulosclerosis (FSGS) glomerular bulk RNA-seq data. Furthermore, single-nuclear RNA-seq data from interferon-γ mouse model podocytes (in vivo) showed similarity to human FSGS single-cell RNA-seq data from urine podocytes (ex vivo) and from human podocyte cell lines (in vitro) using bulk RNA-seq. These data highlight differences in the transcriptional effects of the APOL1-G1 risk variant in a model specific manner. Shared differentially expressed genes in podocytes in both mouse models suggest possible novel glomerular damage markers in APOL1 variant-induced diseases. Transcription factor Zbtb16 was downregulated in podocytes and endothelial cells in both models, possibly contributing to glucocorticoid-resistance. In summary, these findings in two mouse models suggest both shared and distinct therapeutic opportunities for APOL1 glomerulopathies.
RESUMEN
Hyponatremia and salt wasting is a common occurance in patients with HIV/AIDS, however, the understanding of its contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the expression level of the Slc12a3 gene, encoding the Na-Cl cotransporter, which is responsible for sodium reabsorption in distal nephron segments, we performed single-nucleus RNA sequencing of kidney cortices from three wild-type (WT) and three Vpr-transgenic (Vpr Tg) mice. The results showed that the percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05), and that in Vpr Tg mice, Slc12a3 expression was not different in DCT cell cluster. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with WT (P < 0.01). Immunohistochemistry demonstrated fewer Slc12a3+ Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis comparing Vpr Tg and WT in the DCT cluster showed Ier3, an inhibitor of apoptosis, to be the most downregulated gene. These observations demonstrate that the salt-wasting effect of Vpr in Vpr Tg mice is mediated by loss of Slc12a3+ Pvalb+ DCT1 segments via apoptosis dysregulation.
RESUMEN
HIV-associated nephropathy (HIVAN) impairs functions of both glomeruli and tubules. Attention has been previously focused on the HIVAN glomerulopathy. Tubular injury has drawn increased attention because sodium wasting is common in hospitalized HIV/AIDS patients. We used viral protein R (Vpr)-transgenic mice to investigate the mechanisms whereby Vpr contributes to urinary sodium wasting. In phosphoenolpyruvate carboxykinase promoter-driven Vpr-transgenic mice, in situ hybridization showed that Vpr mRNA was expressed in all nephron segments, including the distal convoluted tubule. Vpr-transgenic mice, compared with wild-type littermates, markedly increased urinary sodium excretion, despite similar plasma renin activity and aldosterone levels. Kidneys from Vpr-transgenic mice also markedly reduced protein abundance of the Na+-Cl- cotransporter (NCC), while mineralocorticoid receptor (MR) protein expression level was unchanged. In African green monkey kidney cells, Vpr abrogated the aldosterone-mediated stimulation of MR transcriptional activity. Gene expression of Slc12a3 (NCC) in Vpr-transgenic mice was significantly lower compared with wild-type mice, assessed by both qRT-PCR and RNAScope in situ hybridization analysis. Chromatin immunoprecipitation assays identified multiple MR response elements (MRE), located from 5 kb upstream of the transcription start site and extending to the third exon of the SLC12A3 gene. Mutation of MRE and SP1 sites in the SLC12A3 promoter region abrogated the transcriptional responses to aldosterone and Vpr, indicating that functional MRE and SP1 are required for the SLC12A3 gene suppression in response to Vpr. Thus, Vpr attenuates MR transcriptional activity and inhibits Slc12a3 transcription in the distal convoluted tubule and contributes to salt wasting in Vpr-transgenic mice.
Asunto(s)
Productos del Gen vpr , VIH-1 , Aldosterona/metabolismo , Aldosterona/farmacología , Animales , Chlorocebus aethiops , Productos del Gen vpr/metabolismo , VIH-1/genética , Túbulos Renales Distales/metabolismo , Ratones , Ratones Transgénicos , Fosfoenolpiruvato , ARN Mensajero/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Renina/metabolismo , Sodio/metabolismo , Cloruro de Sodio/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , TiazidasRESUMEN
INTRODUCTION: Individuals with focal segmental glomerular sclerosis (FSGS) typically undergo kidney biopsy only once, which limits the ability to characterize kidney cell gene expression over time. METHODS: We used single-cell RNA sequencing (scRNA-seq) to explore disease-related molecular signatures in urine cells from subjects with FSGS. We collected 17 urine samples from 12 FSGS subjects and captured these as 23 urine cell samples. The inflammatory signatures from renal epithelial and immune cells were evaluated in bulk gene expression data sets of FSGS and minimal change disease (MCD) (The Nephrotic Syndrome Study Network [NEPTUNE] study) and an immune single-cell data set from lupus nephritis (Accelerating Medicines Partnership). RESULTS: We identified immune cells, predominantly monocytes, and renal epithelial cells in the urine. Further analysis revealed 2 monocyte subtypes consistent with M1 and M2 monocytes. Shed podocytes in the urine had high expression of marker genes for epithelial-to-mesenchymal transition (EMT). We selected the 16 most highly expressed genes from urine immune cells and 10 most highly expressed EMT genes from urine podocytes as immune signatures and EMT signatures, respectively. Using kidney biopsy transcriptomic data from NEPTUNE, we found that urine cell immune signature and EMT signature genes were more highly expressed in FSGS biopsies compared with MCD biopsies. CONCLUSION: The identification of monocyte subsets and podocyte expression signatures in the urine samples of subjects with FSGS suggests that urine cell profiling might serve as a diagnostic and prognostic tool in nephrotic syndrome. Furthermore, this approach may aid in the development of novel biomarkers and identifying personalized therapies targeting particular molecular pathways in immune cells and podocytes.
RESUMEN
Recent advances in single-cell technology have enabled investigation of genomic profiles and molecular crosstalk among individual cells obtained from tissues and biofluids at unprecedented resolution. Glomerular diseases, either primary or secondary to systemic diseases, often manifest elements of inflammation and of innate and adaptive immune responses. Application of single-cell methods have revealed cellular signatures of inflammation, cellular injury, and fibrosis. From these signatures, potential therapeutic targets can be inferred and in theory, this approach might facilitate identification of precision therapeutics for these diseases. Single-cell analyses of urine samples and skin lesions from patients with lupus nephritis and of urine samples from patients with diabetic nephropathy and focal segmental glomerulosclerosis have presented potential novel approaches for the diagnosis and monitoring of disease activity. These single-cell approaches, in contrast to kidney biopsy, are non-invasive and could be repeated multiple times as needed.
RESUMEN
African-Americans have a three-fold higher rate of chronic kidney disease compared to European-Americans. Much of this excess risk is attributed to genetic variants in APOL1, encoding apolipoprotein L1, that are present only in individuals with sub-Saharan ancestry. Although 10 years have passed since the discovery of APOL1 renal risk variants, the mechanisms by which APOL1 risk allele gene products damage glomerular cells remain incompletely understood. Many mechanisms have been reported in cell culture models, but few have been demonstrated to be active in transgenic models. In this narrative review, we will review existing APOL1 transgenic models, from flies to fish to mice; discuss findings and limitations from studies; and consider future research directions.
RESUMEN
The Sequence Read Archive (SRA) is a large public repository that stores raw next-generation sequencing data from thousands of diverse scientific investigations. Despite its promise, reuse and re-analysis of SRA data has been challenged by the heterogeneity and poor quality of the metadata that describe its biological samples. Recently, the MetaSRA project standardized these metadata by annotating each sample with terms from biomedical ontologies. In this work, we present a pair of Jupyter notebook-based tools that utilize the MetaSRA for building structured datasets from the SRA in order to facilitate secondary analyses of the SRA's human RNA-seq data. The first tool, called the Case-Control Finder, finds suitable case and control samples for a given disease or condition where the cases and controls are matched by tissue or cell type. The second tool, called the Series Finder, finds ordered sets of samples for the purpose of addressing biological questions pertaining to changes over a numerical property such as time. These tools were the result of a three-day-long NCBI Codeathon in March 2019 held at the University of North Carolina at Chapel Hill.
Asunto(s)
Ontologías Biológicas , Conjuntos de Datos como Asunto , Secuenciación de Nucleótidos de Alto Rendimiento , Metadatos , Programas Informáticos , Estudios de Casos y Controles , Humanos , RNA-SeqRESUMEN
The associations of single nucleotide polymorphisms (SNPs) in PLA2R1 and HLA-DQA1, as well as HLA-DRB1*15:01-DQB1*06:02 haplotype with idiopathic membranous nephropathy (IMN) is well known. However, the primary associations of these loci still need to be determined. We used Japanese-specific SNP genotyping array and imputation using 2,048 sequenced Japanese samples to fine-map PLA2R1 region in 98 patients and 413 controls. The most significant SNPs were replicated in a separate sample set of 130 patients and 288 controls. A two-SNP haplotype of intronic and missense SNPs showed the strongest association. The intronic SNP is strongly associated with PLA2R1 expression in the Genotype-Tissue Expression (GTEx) database, and the missense SNP is predicted to alter peptide binding with HLA-DRB1*15:01 by the Immune Epitope Database (IEDB). In HLA region, we performed relative predispositional effect (RPE) tests and identified additional risk alleles in both HLA-DRB1 and HLA-DQB1. We collapsed the risk alleles in each of HLA-DRB1 and HLA-DQB1 into single risk alleles. Reciprocal conditioning of these collapsed risk alleles showed more residual significance for HLA-DRB1 collapsed risk than HLA-DQB1 collapsed risk. These results indicate that changes in the expression levels of structurally different PLA2R protein confer risk for IMN in the presence of risk HLA-DRB1 alleles.
Asunto(s)
Glomerulonefritis Membranosa/genética , Cadenas HLA-DRB1/genética , Polimorfismo de Nucleótido Simple , Receptores de Fosfolipasa A2/genética , Haplotipos , Humanos , Receptores de Fosfolipasa A2/metabolismoRESUMEN
[This corrects the article DOI: 10.1038/hgv.2015.24.][This corrects the article DOI: 10.1038/hgv.2015.24.].
RESUMEN
The oxytocin receptor (OXTR) gene has been implicated as a risk gene for autism spectrum disorder (ASD)-a neurodevelopmental disorder with essential features of impairments in social communication and reciprocal interaction. The genetic associations between common variations in OXTR and ASD have been reported in multiple ethnic populations. However, little is known about the distribution of rare variations within OXTR in ASD patients. In this study, we resequenced the full length of OXTR in 105 ASD individuals using an approach that combined the power of next-generation sequencing technology, long-range PCR and DNA pooling. We demonstrated that rare variants with minor allele frequency as low as 0.05% could be reliably detected by our method. We identified 28 novel variants including potential functional variants in the intron region and one rare missense variant (R150S). We subsequently performed Sanger sequencing and validated five novel variants located in previously suggested candidate regions in ASD individuals. Further sequencing of 312 healthy subjects showed that the burden of rare variants is significantly higher in ASDs compared with healthy individuals. Our results support that the rare variation in OXTR gene might be involved in ASD.