Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
New Phytol ; 228(3): 1038-1054, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32463943

RESUMEN

In Arabidopsis thaliana, NRT2.1 codes for a main component of the root nitrate high-affinity transport system. Previous studies revealed that post-translational regulation of NRT2.1 plays an important role in the control of root nitrate uptake and that one mechanism could correspond to NRT2.1 C-terminus processing. To further investigate this hypothesis, we produced transgenic plants with truncated forms of NRT2.1. This revealed an essential sequence for NRT2.1 activity, located between the residues 494 and 513. Using a phospho-proteomic approach, we found that this sequence contains one phosphorylation site, at serine 501, which can inactivate NRT2.1 function when mimicking the constitutive phosphorylation of this residue in transgenic plants. This phenotype could neither be explained by changes in abundance of NRT2.1 and NAR2.1, a partner protein of NRT2.1, nor by a lack of interaction between these two proteins. Finally, the relative level of serine 501 phosphorylation was found to be increased by ammonium nitrate in wild-type plants, leading to the inactivation of NRT2.1 and to a decrease in high affinity nitrate transport into roots. Altogether, these observations reveal a new and essential mechanism for the regulation of NRT2.1 activity.


Asunto(s)
Proteínas de Transporte de Anión , Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitratos/metabolismo , Fosforilación , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Proteómica
2.
Proc Natl Acad Sci U S A ; 110(9): 3633-8, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23401556

RESUMEN

Seeds are in a natural oxidative context leading to protein oxidation. Although inevitable for proper progression from maturation to germination, protein oxidation at high levels is detrimental and associated with seed aging. Oxidation of methionine to methionine sulfoxide is a common form of damage observed during aging in all organisms. This damage is reversible through the action of methionine sulfoxide reductases (MSRs), which play key roles in lifespan control in yeast and animal cells. To investigate the relationship between MSR capacity and longevity in plant seeds, we first used two Medicago truncatula genotypes with contrasting seed quality. After characterizing the MSR family in this species, we analyzed gene expression and enzymatic activity in immature and mature seeds exhibiting distinct quality levels. We found a very strong correlation between the initial MSR capacities in different lots of mature seeds of the two genotypes and the time to a drop in viability to 50% after controlled deterioration. We then analyzed seed longevity in Arabidopsis thaliana lines, in which MSR gene expression has been genetically altered, and observed a positive correlation between MSR capacity and longevity in these seeds as well. Based on our data, we propose that the MSR repair system plays a decisive role in the establishment and preservation of longevity in plant seeds.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/fisiología , Medicago truncatula/enzimología , Medicago truncatula/fisiología , Metionina Sulfóxido Reductasas/metabolismo , Semillas/enzimología , Semillas/fisiología , Secuencia de Bases , Bases de Datos Genéticas , Germinación , Semillas/crecimiento & desarrollo
3.
Plant Physiol ; 158(2): 1067-78, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22158677

RESUMEN

In Arabidopsis (Arabidopsis thaliana), the NRT2.1 gene codes for the main component of the root nitrate (NO(3)(-)) high-affinity transport system (HATS). Due to the strong correlation generally found between high-affinity root NO(3)(-) influx and NRT2.1 mRNA level, it has been postulated that transcriptional regulation of NRT2.1 is a key mechanism for modulation of the HATS activity. However, this hypothesis has never been demonstrated, and is challenged by studies suggesting the occurrence of posttranscriptional regulation at the NRT2.1 protein level. To unambiguously clarify the respective roles of transcriptional and posttranscriptional regulations of NRT2.1, we generated transgenic lines expressing a functional 35S::NRT2.1 transgene in an atnrt2.1 mutant background. Despite a high and constitutive NRT2.1 transcript accumulation in the roots, the HATS activity was still down-regulated in the 35S::NRT2.1 transformants in response to repressive nitrogen or dark treatments that strongly reduce NRT2.1 transcription and NO(3)(-) HATS activity in the wild type. In some treatments, this was associated with a decline of NRT2.1 protein abundance, indicating posttranscriptional regulation of NRT2.1. However, in other instances, NRT2.1 protein level remained constant. Changes in abundance of NAR2.1, a partner protein of NRT2.1, closely followed those of NRT2.1, and thus could not explain the close-to-normal regulation of the HATS in the 35S::NRT2.1 transformants. Even if in certain conditions the transcriptional regulation of NRT2.1 contributes to a limited extent to the control of the HATS, we conclude from this study that posttranscriptional regulation of NRT2.1 and/or NAR2.1 plays a predominant role in the control of the NO(3)(-) HATS in Arabidopsis.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Raíces de Plantas/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Transporte de Anión/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Prueba de Complementación Genética , Plantas Modificadas Genéticamente , Transgenes
4.
Plant Cell Environ ; 36(3): 670-82, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22943306

RESUMEN

Methionine (Met) in proteins can be oxidized to two diastereoisomers of methionine sulfoxide, Met-S-O and Met-R-O, which are reduced back to Met by two types of methionine sulfoxide reductases (MSRs), A and B, respectively. MSRs are generally supplied with reducing power by thioredoxins. Plants are characterized by a large number of thioredoxin isoforms, but those providing electrons to MSRs in vivo are not known. Three MSR isoforms, MSRA4, MSRB1 and MSRB2, are present in Arabidopsis thaliana chloroplasts. Under conditions of high light and long photoperiod, plants knockdown for each plastidial MSR type or for both display reduced growth. In contrast, overexpression of plastidial MSRBs is not associated with beneficial effects in terms of growth under high light. To identify the physiological reductants for plastidial MSRs, we analyzed a series of mutants deficient for thioredoxins f, m, x or y. We show that mutant lines lacking both thioredoxins y1 and y2 or only thioredoxin y2 specifically display a significantly reduced leaf MSR capacity (-25%) and growth characteristics under high light, related to those of plants lacking plastidial MSRs. We propose that thioredoxin y2 plays a physiological function in protein repair mechanisms as an electron donor to plastidial MSRs in photosynthetic organs.


Asunto(s)
Arabidopsis/enzimología , Metionina Sulfóxido Reductasas/metabolismo , Hojas de la Planta/enzimología , Plastidios/enzimología , Tiorredoxinas/metabolismo , Arabidopsis/genética , Técnicas de Silenciamiento del Gen , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Metionina Sulfóxido Reductasas/genética , Fenotipo
5.
J Biol Chem ; 285(20): 14964-14972, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20236937

RESUMEN

Thioredoxins (Trxs) are ubiquitous enzymes catalyzing the reduction of disulfide bonds, thanks to a CXXC active site. Among their substrates, 2-Cys methionine sulfoxide reductases B (2-Cys MSRBs) reduce the R diastereoisomer of methionine sulfoxide (MetSO) and possess two redox-active Cys as follows: a catalytic Cys reducing MetSO and a resolving one, involved in disulfide bridge formation. The other MSRB type, 1-Cys MSRBs, possesses only the catalytic Cys, and their regeneration mechanisms by Trxs remain unclear. The plant plastidial Trx CDSP32 is able to provide 1-Cys MSRB with electrons. CDSP32 includes two Trx modules with one potential active site (219)CGPC(222) and three extra Cys. Here, we investigated the redox properties of recombinant Arabidopsis CDSP32 and delineated the biochemical mechanisms of MSRB regeneration by CDSP32. Free thiol titration and 4-acetamido-4'-maleimidyldistilbene-2,2'-disulfonic acid alkylation assays indicated that the Trx possesses only two redox-active Cys, very likely the Cys(219) and Cys(222). Protein electrophoresis analyses coupled to mass spectrometry revealed that CDSP32 forms a heterodimeric complex with MSRB1 via reduction of the sulfenic acid formed on MSRB1 catalytic Cys after MetSO reduction. MSR activity assays using variable CDSP32 amounts revealed that MSRB1 reduction proceeds with a 1:1 stoichiometry, and redox titrations indicated that CDSP32 and MSRB1 possess midpoints potentials of -337 and -328 mV at pH 7.9, respectively, indicating that regeneration of MSRB1 activity by the Trx through sulfenic acid reduction is thermodynamically feasible in physiological conditions.


Asunto(s)
Arabidopsis/enzimología , Ácidos Sulfénicos/metabolismo , Tiorredoxinas/metabolismo , Catálisis , Electroforesis en Gel de Poliacrilamida , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tiorredoxinas/genética
6.
Plant J ; 61(2): 271-82, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19874542

RESUMEN

Methionine oxidation to methionine sulfoxide (MetSO) is reversed by two types of methionine sulfoxide reductases (MSRs), A and B, specific to MetSO S- and R-diastereomers, respectively. Two MSRB isoforms, MSRB1 and MSRB2, are present in chloroplasts of Arabidopsis thaliana. To assess their physiological role, we characterized Arabidopsis mutants knockout for the expression of MSRB1, MSRB2 or both genes. Measurements of MSR activity in leaf extracts revealed that the two plastidial MSRB enzymes account for the major part of leaf peptide MSR capacity. Under standard conditions of light and temperature, plants lacking one or both plastidial MSRBs do not exhibit any phenotype, regarding growth and development. In contrast, we observed that the concomitant absence of both proteins results in a reduced growth for plants cultivated under high light or low temperature. In contrast, double mutant lines restored for MSRB2 expression display no phenotype. Under environmental constraints, the MetSO level in leaf proteins is higher in plants lacking both plastidial MSRBs than in Wt plants. The absence of plastidial MSRBs is associated with an increased chlorophyll a/b ratio, a reduced content of Lhca1 and Lhcb1 proteins and an impaired photosynthetic performance. Finally, we show that MSRBs are able to use as substrates, oxidized cpSRP43 and cpSRP54, the two main components involved in the targeting of Lhc proteins to the thylakoids. We propose that plastidial MSRBs fulfil an essential function in maintaining vegetative growth of plants during environmental constraints, through a role in the preservation of photosynthetic antennae.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cloroplastos/enzimología , Metionina Sulfóxido Reductasas/metabolismo , Hojas de la Planta/enzimología , Adaptación Fisiológica/efectos de la radiación , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Western Blotting , Clorofila/metabolismo , Genotipo , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Metionina/análogos & derivados , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Mutación , Fenotipo , Fotosíntesis/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Especificidad por Sustrato , Temperatura
7.
J Exp Bot ; 62(7): 2299-308, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21239382

RESUMEN

The availability of mineral nutrients in the soil dramatically fluctuates in both time and space. In order to optimize their nutrition, plants need efficient sensing systems that rapidly signal the local external concentrations of the individual nutrients. Until recently, the most upstream actors of the nutrient signalling pathways, i.e. the sensors/receptors that perceive the extracellular nutrients, were unknown. In Arabidopsis, increasing evidence suggests that, for nitrate, the main nitrogen source for most plant species, a major sensor is the NRT1.1 nitrate transporter, also contributing to nitrate uptake by the roots. Membrane proteins that fulfil a dual nutrient transport/signalling function have been described in yeast and animals, and are called 'transceptors'. This review aims to illustrate the nutrient transceptor concept in plants by presenting the current evidence indicating that NRT1.1 is a representative of this class of protein. The various facets, as well as the mechanisms of nitrate sensing by NRT1.1 are considered, and the possible occurrence of other nitrate transceptors is discussed.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Anión/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Transducción de Señal
8.
FEBS Lett ; 581(23): 4371-6, 2007 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-17761174

RESUMEN

Methionine sulfoxide reductases (MSRs) A and B reduce methionine sulfoxide (MetSO) S- and R-diastereomers, respectively, back to Met using electrons generally supplied by thioredoxin. The physiological reductants for MSRBs remain unknown in plants, which display a remarkable variety of thioredoxins (Trxs) and glutaredoxins (Grxs). Using recombinant proteins, we show that Arabidopsis plastidial MSRB1 and MSRB2, which differ regarding the number of presumed redox-active cysteines, possess specific reductants. Most simple-module Trxs, especially Trx m1 and Trx y2, are preferential and efficient electron donors towards MSRB2, while the double-module CDSP32 Trx and Grxs can reduce only MSRB1. This study identifies novel types of reductants, related to Grxs and peculiar Trxs, for MSRB proteins displaying only one redox-active cysteine.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Glutarredoxinas/metabolismo , Oxidorreductasas/metabolismo , Tiorredoxinas/metabolismo , Proteínas de Arabidopsis/genética , Cisteína/genética , Cisteína/metabolismo , Transporte de Electrón , Glutarredoxinas/genética , Metionina Sulfóxido Reductasas , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Oxidorreductasas/genética , Plastidios/enzimología , Plastidios/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Tiorredoxinas/genética , Factores de Tiempo
9.
Elife ; 62017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28537220

RESUMEN

Adhesion molecules hold cells together but also couple cell membranes to a contractile actomyosin network, which limits the expansion of cell contacts. Despite their fundamental role in tissue morphogenesis and tissue homeostasis, how adhesion molecules control cell shapes and cell patterns in tissues remains unclear. Here we address this question in vivo using the Drosophila eye. We show that cone cell shapes depend little on adhesion bonds and mostly on contractile forces. However, N-cadherin has an indirect control on cell shape. At homotypic contacts, junctional N-cadherin bonds downregulate Myosin-II contractility. At heterotypic contacts with E-cadherin, unbound N-cadherin induces an asymmetric accumulation of Myosin-II, which leads to a highly contractile cell interface. Such differential regulation of contractility is essential for morphogenesis as loss of N-cadherin disrupts cell rearrangements. Our results establish a quantitative link between adhesion and contractility and reveal an unprecedented role of N-cadherin on cell shapes and cell arrangements.


Asunto(s)
Cadherinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Ojo/citología , Ojo/embriología , Células Fotorreceptoras Retinianas Conos/citología , Animales , Forma de la Célula , Miosina Tipo II/metabolismo
10.
Nat Commun ; 8: 15300, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28504266

RESUMEN

Environmental cues profoundly modulate cell proliferation and cell elongation to inform and direct plant growth and development. External phosphate (Pi) limitation inhibits primary root growth in many plant species. However, the underlying Pi sensory mechanisms are unknown. Here we genetically uncouple two Pi sensing pathways in the root apex of Arabidopsis thaliana. First, the rapid inhibition of cell elongation in the transition zone is controlled by transcription factor STOP1, by its direct target, ALMT1, encoding a malate channel, and by ferroxidase LPR1, which together mediate Fe and peroxidase-dependent cell wall stiffening. Second, during the subsequent slow inhibition of cell proliferation in the apical meristem, which is mediated by LPR1-dependent, but largely STOP1-ALMT1-independent, Fe and callose accumulate in the stem cell niche, leading to meristem reduction. Our work uncovers STOP1 and ALMT1 as a signalling pathway of low Pi availability and exuded malate as an unexpected apoplastic inhibitor of root cell wall expansion.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Transportadores de Anión Orgánico/metabolismo , Fosfatos/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Aumento de la Célula , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Malatos/metabolismo , Meristema/citología , Meristema/genética , Meristema/metabolismo , Transportadores de Anión Orgánico/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Peroxidasa/genética , Peroxidasa/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Transducción de Señal/genética , Factores de Transcripción/genética
11.
Mol Plant ; 2(2): 202-17, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19825608

RESUMEN

Methionine oxidation to methionine sulfoxide (MetSO) is reversed by two types of methionine sulfoxide reductases (MSRs), A and B, specific to the S- and R-diastereomers of MetSO, respectively. MSR genes are found in most organisms from bacteria to human. In the current review, we first compare the organization of the MSR gene families in photosynthetic organisms from cyanobacteria to higher plants. The analysis reveals that MSRs constitute complex families in higher plants, bryophytes, and algae compared to cyanobacteria and all non-photosynthetic organisms. We also perform a classification, based on gene number and structure, position of redox-active cysteines and predicted sub-cellular localization. The various catalytic mechanisms and potential physiological electron donors involved in the regeneration of MSR activity are then described. Data available from higher plants reveal that MSRs fulfill an essential physiological function during environmental constraints through a role in protein repair and in protection against oxidative damage. Taking into consideration the expression patterns of MSR genes in plants and the known roles of these genes in non-photosynthetic cells, other functions of MSRs are discussed during specific developmental stages and ageing in photosynthetic organisms.


Asunto(s)
Metionina Sulfóxido Reductasas/metabolismo , Fotosíntesis , Biocatálisis , Genes de Plantas , Metionina Sulfóxido Reductasas/genética , Oxidación-Reducción
12.
J Biol Chem ; 284(28): 18963-71, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19457862

RESUMEN

Methionine oxidation leads to the formation of S- and R-diastereomers of methionine sulfoxide (MetSO), which are reduced back to methionine by methionine sulfoxide reductases (MSRs) A and B, respectively. MSRBs are classified in two groups depending on the conservation of one or two redox-active Cys; 2-Cys MSRBs possess a catalytic Cys-reducing MetSO and a resolving Cys, allowing regeneration by thioredoxins. The second type, 1-Cys MSRBs, possess only the catalytic Cys. The biochemical mechanisms involved in activity regeneration of 1-Cys MSRBs remain largely elusive. In the present work we used recombinant plastidial Arabidopsis thaliana MSRB1 and MSRB2 as models for 1-Cys and 2-Cys MSRBs, respectively, to delineate the Trx- and glutaredoxin-dependent reduction mechanisms. Activity assays carried out using a series of cysteine mutants and various reductants combined with measurements of free thiols under distinct oxidation conditions and mass spectrometry experiments show that the 2-Cys MSRB2 is reduced by Trx through a dithiol-disulfide exchange involving both redox-active Cys of the two partners. Regarding 1-Cys MSRB1, oxidation of the enzyme after substrate reduction leads to the formation of a stable sulfenic acid on the catalytic Cys, which is subsequently glutathionylated. The deglutathionylation of MSRB1 is achieved by both mono- and dithiol glutaredoxins and involves only their N-terminal conserved catalytic Cys. This study proposes a detailed mechanism of the regeneration of 1-Cys MSRB activity by glutaredoxins, which likely constitute physiological reductants for this type of MSR.


Asunto(s)
Arabidopsis/metabolismo , Glutarredoxinas/metabolismo , Oxidorreductasas/química , Regeneración , Tiorredoxinas/química , Catálisis , Cisteína/química , Glutatión/química , Cinética , Metionina Sulfóxido Reductasas , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Mutación , Fenómenos Fisiológicos de las Plantas , Estructura Terciaria de Proteína , Compuestos de Sulfhidrilo/química
13.
Biochem Biophys Res Commun ; 361(3): 629-33, 2007 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-17673175

RESUMEN

Two distinct stereospecific methionine sulfoxide reductases (Msr), MsrA and MsrB reduce the oxidized methionine (Met), methionine sulfoxide [Met(O)], back to Met. In this report, we examined the reducing systems required for the activities of two chloroplastic MsrB enzymes (NtMsrB1 and NtMsrB2) from tobacco (Nicotiana tabacum). We found that NtMrsB1, but not NtMsrB2, could use dithiothreitol as an efficient hydrogen donor. In contrast Escherichia coli thioredoxin (Trx) could serve as a reducing agent for NtMsrB2, but not for NtMsrB1. Similar to previously reported human Trx-independent hMsrB2 and hMsrB3, NtMsrB1 could also use bovine liver thionein and selenocysteamine as reducing agents. Furthermore, the unique plant Trx-like protein CDSP32 was shown to reduce NtMsrB1, hMsrB2 and hMsrB3. All these tested Trx-independent MsrB enzymes lack an additional cysteine (resolving cysteine) that is capable of forming a disulfide bond on the enzyme during the catalytic reaction. Our results indicate that plant and animal MsrB enzymes lacking a resolving cysteine likely share a similar reaction mechanism.


Asunto(s)
Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Tiorredoxinas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Cloroplastos/enzimología , Cistamina/análogos & derivados , Cistamina/química , Cistamina/metabolismo , Cisteína/química , Cisteína/metabolismo , Humanos , Metionina Sulfóxido Reductasas , Proteínas de Microfilamentos , Datos de Secuencia Molecular , Compuestos de Organoselenio/química , Compuestos de Organoselenio/metabolismo , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Proteínas de Plantas/química , Análisis de Secuencia de Proteína , Especificidad por Sustrato , Nicotiana/enzimología , Factores de Transcripción/química
14.
Dev Biol ; 283(2): 446-58, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15936749

RESUMEN

The teashirt gene encodes a protein with three widely spaced zinc finger motifs that is crucial for specifying trunk identity in Drosophila embryos. Here, we describe a gene called tiptop, which encodes a protein highly similar to Teashirt. We have analyzed the expression patterns and functions of these two genes in the trunk of the embryo. Initially, teashirt and tiptop expressions are detected in distinct domains; teashirt in the trunk and tiptop in parts of the head and tail. In different mutant situations, we show that, in the trunk and head, they repress each other's expression. Unlike teashirt, we found that deletion of tiptop is homozygous viable and fertile. However, embryos lacking both gene activities display a more severe trunk phenotype than teashirt mutant embryos alone. Ectopic expression of either gene produces an almost identical phenotype, indicating that Teashirt and Tiptop have, on the whole, common activities. We conclude that Teashirt and Tiptop repress each other's expression and that Teashirt has a crucial role for trunk patterning that is in part masked by ectopic expression of Tiptop.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero/fisiología , Epidermis/embriología , Epidermis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Proteínas Represoras/genética , Factores de Transcripción/genética , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA