Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Protein Sci ; 33(4): e4964, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501584

RESUMEN

Worldwide, tuberculosis is the second leading infectious killer and multidrug resistance severely hampers disease control. Mycolic acids are a unique category of lipids that are essential for viability, virulence, and persistence of the causative agent, Mycobacterium tuberculosis (Mtb). Therefore, enzymes involved in mycolic acid biosynthesis represent an important class of drug targets. We previously showed that the (3R)-hydroxyacyl-ACP dehydratase (HAD) protein HadD is dedicated mainly to the production of ketomycolic acids and plays a determinant role in Mtb biofilm formation and virulence. Here, we discovered that HAD activity requires the formation of a tight heterotetramer between HadD and HadB, a HAD unit encoded by a distinct chromosomal region. Using biochemical, structural, and cell-based analyses, we showed that HadB is the catalytic subunit, whereas HadD is involved in substrate binding. Based on HadBDMtb crystal structure and substrate-bound models, we identified determinants of the ultra-long-chain lipid substrate specificity and revealed details of structure-function relationship. HadBDMtb unique function is partly due to a wider opening and a higher flexibility of the substrate-binding crevice in HadD, as well as the drastically truncated central α-helix of HadD hotdog fold, a feature described for the first time in a HAD enzyme. Taken together, our study shows that HadBDMtb , and not HadD alone, is the biologically relevant functional unit. These results have important implications for designing innovative antivirulence molecules to fight tuberculosis, as they suggest that the target to consider is not an isolated subunit, but the whole HadBD complex.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Acido Graso Sintasa Tipo II/química , Ácidos Micólicos/metabolismo , Hidroliasas/química
2.
Microbiology (Reading) ; 158(Pt 3): 843-855, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22194354

RESUMEN

Corynebacterineae are characterized by the presence of long-chain lipids, notably mycolic acids (α-alkyl, ß-hydroxy fatty acids), the structures of which are genus-specific. Mycolic acids from two environmental strains, Amycolicicoccus subflavus and Hoyosella altamirensis, were isolated and their structures were established using a combination of mass spectrometry analysis, (1)H-NMR spectroscopy and chemical degradations. The C(2)-C(3) cleavage of these C(30)-C(36) acids led to the formation of two fragments: saturated C(9)-C(11) acids, and saturated and unsaturated C(20)-C(25) aldehydes. Surprisingly, the fatty acids at the origin of the two fragments making up these mycolic acids were present in only minute amounts in the fatty acid pool. Moreover, the double bond in the main C(24) aldehyde fragment was located at position ω16, whereas that found in the ethylenic fatty acids of the bacteria was at ω9. These data question the biosynthesis of these new mycolic acids in terms of the nature of the precursors, chain elongation and desaturation. Nevertheless, they are consistent with the occurrence of the key genes of mycolic acid biosynthesis, including those encoding proteins of the fatty acid synthase II system, identified in the genome of A. subflavus. Altogether, while the presence of mycolic acids and analysis of their 16S rDNA sequences would suggest that these strains belong to the Mycobacteriaceae family, the originality of their structures reinforces the recent description of the novel genera Amycolicicoccus and Hoyosella.


Asunto(s)
Actinomycetales/química , Actinomycetales/clasificación , Microbiología Ambiental , Ácidos Micólicos/análisis , Actinomycetales/aislamiento & purificación , Vías Biosintéticas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Ácidos Micólicos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA