Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Agric Food Chem ; 70(46): 14633-14640, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36350751

RESUMEN

Metabolomic studies on root uptake and transformation of bioactive compounds, like cereal benzoxazinoids (BXs) in non-BX producing plants, are very limited. Therefore, a targeted mass-spectrometry-based metabolomics study was performed to elucidate the root uptake of BXs in white clover (Trifolium repens L.) and the impact of absorbed BXs on intrinsic clover secondary metabolites. Clover plants grew in a medium containing 100 µM of individual BXs (five aglycone and one glycoside BXs) for 3 weeks. Subsequently, plant tissues were analyzed by liquid chromatography-tandem mass spectrometry to quantify the BXs and clover secondary metabolite concentrations. All BXs were taken up by clover roots and translocated to the shoots. Upon uptake of 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), 2-hydroxy-1,4-benzoxazin-3-one (HBOA), and 2-ß-d-glucopyranosyloxy-1,4-benzoxazin-3-one (HBOA-glc), the parent compounds and a range of transformation products were seen in the roots and shoots. The individual BX concentrations ranged from not detected (nd) to 469 µg/g of dry weight (dw) and from nd to 170 µg/g of dw in the roots and shoots, respectively. The root uptake of BXs altered the composition of intrinsic clover secondary metabolites. In particular, the concentration of flavonoids and the hormone abscisic acid increased substantially in comparison to control plants.


Asunto(s)
Benzoxazinas , Trifolium , Benzoxazinas/metabolismo , Grano Comestible/química , Ácido Abscísico/metabolismo , Trifolium/metabolismo , Medicago/metabolismo , Flavonoides/metabolismo , Raíces de Plantas/química
2.
Sci Rep ; 12(1): 5260, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347164

RESUMEN

Prostate cancer (PC) is a common cancer among men, and preventive strategies are warranted. Benzoxazinoids (BXs) in rye have shown potential against PC in vitro but human studies are lacking. The aim was to establish a quantitative method for analysis of BXs and investigate their plasma levels after a whole grain/bran rye vs refined wheat intervention, as well as exploring their association with PSA, in men with PC. A quantitative method for analysis of 22 BXs, including novel metabolites identified by mass spectrometry and NMR, was established, and applied to plasma samples from a randomized crossover study where patients with indolent PC (n = 17) consumed 485 g whole grain rye/rye bran or fiber supplemented refined wheat daily for 6 wk. Most BXs were significantly higher in plasma after rye (0.3-19.4 nmol/L in plasma) vs. refined wheat (0.05-2.9 nmol/L) intake. HBOA-glc, 2-HHPAA, HBOA-glcA, 2-HPAA-glcA were inversely correlated to PSA in plasma (p < 0.04). To conclude, BXs in plasma, including metabolites not previously analyzed, were quantified. BX metabolites were significantly higher after rye vs refined wheat consumption. Four BX-related metabolites were inversely associated with PSA, which merits further investigation.


Asunto(s)
Neoplasias de la Próstata , Secale , Benzoxazinas/metabolismo , Estudios Cruzados , Humanos , Masculino , Antígeno Prostático Específico/metabolismo , Secale/metabolismo
3.
Chemosphere ; 262: 127848, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32771708

RESUMEN

Honey bees are important pollinators and are subject to numerous stressors, such as changing floral resources, parasites, and agrochemical exposure. Pesticide exposure has been linked to the decline in the global honey bee population. We have limited knowledge of the metabolic pathways and synergistic effects of xenobiotics in bees. Quercetin is one of the most abundant phytochemicals in plants and is therefore abundant in the honey bee diet. Quercetin can upregulate the detoxification system in honey bees; however, it is still unknown to what extent quercetin ingestion can reduce the content of absorbed pesticides. In this study, we investigated the effect of dietary quercetin on the contents of three pesticides in honey bees: imidacloprid (insecticide), tebuconazole (fungicide), and tau-fluvalinate (insecticide and acaricide). Bees were divided into two main groups and fed either quercetin-sucrose paste or only sucrose for 72 h. Thereafter, they were orally exposed to ∼10 ng/bee imidacloprid or contact-exposed to ∼0.9 µg/bee tau-fluvalinate or ∼5.2 µg/bee tebuconazole. After 1 h of oral exposure or 24 h of contact exposure, the bees were anaesthetised with CO2, sacrificed by freezing, and extracted with a validated QuEChERS method. Subsequently, the concentrations of the three pesticides and quercetin in the bees were determined with a triple quadrupole tandem mass spectrometer coupled to an HPLC system. No significant effect on the concentration of tebuconazole or tau-fluvalinate was observed in bees fed quercetin. Intake of quercetin led to a reduction in the concentration of imidacloprid in honey bees. Quercetin-rich plants may be exploited in future beekeeping.


Asunto(s)
Abejas/metabolismo , Plaguicidas/metabolismo , Quercetina , Acaricidas , Animales , Apicultura , Dieta , Insecticidas , Neonicotinoides , Nitrilos , Nitrocompuestos , Fitoquímicos , Piretrinas , Xenobióticos
4.
J Agric Food Chem ; 64(22): 4545-55, 2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-27195655

RESUMEN

Fusarium infection in wheat causes Fusarium head blight, resulting in yield losses and contamination of grains with trichothecenes. Some plant secondary metabolites inhibit accumulation of trichothecenes. Eighteen Fusarium infected wheat cultivars were harvested at five time points and analyzed for the trichothecene deoxynivalenol (DON) and 38 wheat secondary metabolites (benzoxazinoids, phenolic acids, carotenoids, and flavonoids). Multivariate analysis showed that harvest time strongly impacted the content of secondary metabolites, more distinctly for winter wheat than spring wheat. The benzoxazinoid 2-ß-glucopyranoside-2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA-glc), α-tocopherol, and the flavonoids homoorientin and orientin were identified as potential inhibitors of DON accumulation. Several phenolic acids, lutein and ß-carotene also affected DON accumulation, but the effect varied for the two wheat types. The results could form a basis for choosing wheat cultivars using metabolite profiling as a marker for selecting wheat cultivars with improved resistance against Fusarium head blight and accumulation of trichothecene toxins in wheat heads.


Asunto(s)
Fusarium/metabolismo , Micotoxinas/metabolismo , Enfermedades de las Plantas/microbiología , Tricotecenos/metabolismo , Triticum/microbiología , Contaminación de Alimentos/análisis , Estructura Molecular , Micotoxinas/química , Estaciones del Año , Metabolismo Secundario , Tricotecenos/química , Triticum/química , Triticum/crecimiento & desarrollo
5.
J Agric Food Chem ; 64(43): 8235-8245, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27718574

RESUMEN

Rye bread contains high amounts of benzoxazinoids, and in vitro studies have shown suppressive effects of selected benzoxazinoids on prostate cancer cells. Thus, research into benzoxazinoids as possible suppressors of prostate cancer is demanded. A pilot study was performed in which ten prostate cancer patients received a rye-enriched diet 1 week prior to prostatectomy. Plasma and urine samples were collected pre- and postintervention. Ten prostate biopsies were obtained from each patient and histologically evaluated. The biopsies exhibited concentrations above the detection limit of seven benzoxazinoids ranging from 0.15 to 10.59 ng/g tissue. An OPLS-DA analysis on histological and plasma concentrations of benzoxazinoids classified the subjects into two clusters. A tendency of higher benzoxazinoid concentrations toward the benign group encourages further investigations. Benzoxazinoids were quantified by an optimized LC-MS/MS method, and matrix effects were evaluated. At low concentrations in biopsy and plasma matrices the matrix effect was concentration-dependent and nonlinear. For the urine samples the general matrix effects were small but patient-dependent.


Asunto(s)
Benzoxazinas/análisis , Neoplasias de la Próstata/dietoterapia , Neoplasias de la Próstata/patología , Secale , Benzoxazinas/sangre , Benzoxazinas/orina , Biopsia con Aguja Gruesa , Cromatografía Líquida de Alta Presión/métodos , Humanos , Límite de Detección , Masculino , Reproducibilidad de los Resultados
6.
Mol Nutr Food Res ; 57(10): 1847-58, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23650214

RESUMEN

SCOPE: Benzoxazinoids, which are natural compounds recently identified in mature whole grain cereals and bakery products, have been suggested to have a range of pharmacological properties and health-protecting effects. There are no published reports concerned with the absorption and metabolism of bioactive benzoxazinoids in humans. METHODS AND RESULTS: The absorption, metabolism, and excretion of ten different dietary benzoxazinoids were examined by LC-MS/MS by analyzing plasma and urine from 20 healthy human volunteers after daily intake of 143 µmol of total benzoxazinoids from rye bread and rye buns. The results showed that 2-ß-D-glucopyranosyloxy-1,4-benzoxazin-3-one (HBOA-Glc) and its oxidized analog, 2-ß-D-glucopyranosyloxy-4-hydroxy-1,4-benzoxazin-3-one (DIBOA-Glc), were the major circulating benzoxazinoids. After consuming a benzoxazinoid diet for 1 week, morning urine contained eight benzoxazinoids with abundant HBOA-Glc (219 nmol × µmol⁻¹ of creatinine). The sulfate and glucuronide conjugates of 2-hydroxy-1,4-benzoxazin-3-one (HBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) were detected in plasma and urine, indicating substantial phase II metabolism. Direct absorption of lactam glycosides, the reduction of hydroxamic acid glycosides, glucuronidation, and sulfation were the main mechanisms of the absorption and metabolism of benzoxazinoids. CONCLUSION: These results indicate that following ingestion in healthy humans, a range of unmetabolized bioactive dietary benzoxazinoids and their sulfate and glucuronide conjugates appear in circulation and urine.


Asunto(s)
Benzoxazinas/farmacocinética , Dieta , Absorción , Adulto , Benzoxazinas/administración & dosificación , Benzoxazinas/sangre , Benzoxazinas/metabolismo , Benzoxazinas/orina , Índice de Masa Corporal , Pan , Cromatografía Liquida , Femenino , Glucurónidos/metabolismo , Glicósidos/metabolismo , Voluntarios Sanos , Humanos , Modelos Lineales , Masculino , Reproducibilidad de los Resultados , Secale/química , Espectrometría de Masas en Tándem
7.
J Agric Food Chem ; 61(37): 8842-50, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-23971623

RESUMEN

The concentration and absorption of the nine phenolic acids of wheat were measured in a model experiment with catheterized pigs fed whole grain wheat and wheat aleurone diets. Six pigs in a repeated crossover design were fitted with catheters in the portal vein and mesenteric artery to study the absorption of phenolic acids. The difference between the artery and the vein for all phenolic acids was small, indicating that the release of phenolic acids in the large intestine was not sufficient to create a porto-arterial concentration difference. Although, the porto-arterial difference was small, their concentrations in the plasma and the absorption profiles differed between cinnamic and benzoic acid derivatives. Cinnamic acids derivatives such as ferulic acid and caffeic acid had maximum plasma concentration of 82 ± 20 and 200 ± 7 nM, respectively, and their absorption profiles differed depending on the diet consumed. Benzoic acid derivatives showed low concentration in the plasma (<30 nM) and in the diets. The exception was p-hydroxybenzoic acid, with a plasma concentration (4 ± 0.4 µM), much higher than the other plant phenolic acids, likely because it is an intermediate in the phenolic acid metabolism. It was concluded that plant phenolic acids undergo extensive interconversion in the colon and that their absorption profiles reflected their low bioavailability in the plant matrix.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Hidroxibenzoatos/sangre , Absorción Intestinal , Triticum/metabolismo , Alimentación Animal/análisis , Animales , Cateterismo , Femenino , Arterias Mesentéricas/metabolismo , Vena Porta/metabolismo , Porcinos
8.
J Agric Food Chem ; 60(10): 2497-506, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22352867

RESUMEN

Recently, bioactive benzoxazinoids were discovered in cereal grains and bakery products. In this study, we studied the uptake, distribution, and metabolism of these secondary metabolites using a pig model. Twelve benzoxazinoid compounds and their 4 transformation products were quantified in the pigs' diets and biofluids using high-performance liquid chromatography coupled to electrospray ionization triple quadrupole mass spectrometry. The 2-ß-D-glucopyranosyloxy-4-hydroxy-1,4-benzoxazin-3-one (DIBOA-glc) was the most dominant benzoxazinoid (232 nmol/g DM) seconded by the double-hexose derivative of DIBOA (provisionally characterized here as DIBOA-glc-hex) in the rye-based diet. DIBOA-glc (derived from the diet and intestinal deglycosylation of DIBOA-glc-hex) was apparently reduced to 2-ß-D-glucopyranosyloxy-1,4-benzoxazin-3-one (HBOA-glc), the most dominant benzoxazinoid in the blood (829 nmol/L). The benzoxazinoid compounds were excreted in the urine, with HBOA-glc (18 µmol/L) as a major metabolite. In this study, we determined for the first time the bioavailability of dietary benzoxazinoids that have high digestibility, distribution, and metabolism in mammals. These findings could be a milestone for the exploitation of healthful and pharmacological properties of benzoxazinoids.


Asunto(s)
Benzoxazinas/metabolismo , Pan/análisis , Extractos Vegetales/metabolismo , Secale/metabolismo , Porcinos/metabolismo , Animales , Benzoxazinas/análisis , Biotransformación , Extractos Vegetales/análisis , Secale/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA