Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 120(10): 2953-2968, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37256741

RESUMEN

Adeno-associated virus-based gene therapies have demonstrated substantial therapeutic benefit for the treatment of genetic disorders. In manufacturing processes, viral capsids are produced with and without the encapsidated gene of interest. Capsids devoid of the gene of interest, or "empty" capsids, represent a product-related impurity. As a result, a robust and scalable method to enrich full capsids is crucial to provide patients with as much potentially active product as possible. Anion exchange chromatography has emerged as a highly utilized method for full capsid enrichment across many serotypes due to its ease of use, robustness, and scalability. However, achieving sufficient resolution between the full and empty capsids is not trivial. In this work, anion exchange chromatography was used to achieve empty and full capsid resolution for adeno-associated virus serotype 5. A salt gradient screen of multiple salts with varied valency and Hofmeister series properties was performed to determine optimal peak resolution and aggregate reduction. Dual salt effects were evaluated on the same product and process attributes to identify any synergies with the use of mixed ion gradients. The modified process provided as high as ≥75% AAV5 full capsids (≥3-fold enrichment based on the percent full in the feed stream) with near baseline separation of empty capsids and achieved an overall vector genome step yield of >65%.


Asunto(s)
Cápside , Dependovirus , Humanos , Cápside/química , Dependovirus/genética , Serogrupo , Vectores Genéticos , Cromatografía , Proteínas de la Cápside/genética , Cloruro de Sodio
2.
Biotechnol Bioeng ; 117(2): 438-452, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31654407

RESUMEN

The clearance of host cell proteins (HCPs) is of crucial importance in biomanufacturing, given their diversity in composition, structure, abundance, and occasional structural homology with the product. The current approach to HCP clearance in the manufacturing of monoclonal antibodies (mAbs) relies on product capture with Protein A followed by removal of residual HCPs in flow-through mode using ion exchange or mixed-mode chromatography. Recent studies have highlighted the presence of "problematic HCP" species, which are either difficult to remove (Group I), can degrade the mAb product (Group II), or trigger immunogenic reactions (Group III). To improve the clearance of these species, we developed a family of synthetic peptides that target HCPs and exhibit low binding to IgG product. In this study, these peptides were conjugated onto chromatographic resins and evaluated in terms of HCP clearance and mAb yield, using an industrial mAb-producing CHO harvest as model supernatant. To gather detailed knowledge on the binding of individual HCPs, the unbound fractions were subjected to shotgun proteomic analysis by mass spectrometry. It was found that these peptide ligands exhibit superior HCP binding capability compared to those of the benchmark commercial resins commonly used in mAb purification. In addition, some peptide-based resins resulted in much lower losses of product yield compared to these commercial supports. The proteomic analysis showed effective capture of many "problematic HCPs" by the peptide ligands, especially some that are weakly bound by commercial media. Collectively, these results indicate that these peptides show great promise toward the development of next-generation adsorbents for safer and cost-effective manufacturing of biologics.


Asunto(s)
Péptidos , Proteínas , Proteómica/métodos , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Células CHO , Cricetinae , Cricetulus , Ligandos , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Proteínas/análisis , Proteínas/química , Proteínas/aislamiento & purificación , Proteínas/metabolismo , Proteínas Recombinantes/aislamiento & purificación
3.
Int J Mol Sci ; 21(11)2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32471034

RESUMEN

While antibodies remain established therapeutic and diagnostic tools, other protein scaffolds are emerging as effective and safer alternatives. Affibodies in particular are a new class of small proteins marketed as bio-analytic reagents. They feature tailorable binding affinity, low immunogenicity, high tissue permeation, and high expression titer in bacterial hosts. This work presents the development of affibody-binding peptides to be utilized as ligands for their purification from bacterial lysates. Affibody-binding candidates were identified by screening a peptide library simultaneously against two model affibodies (anti-immunoglobulin G (IgG) and anti-albumin) with the aim of selecting peptides targeting the conserved domain of affibodies. An ensemble of homologous sequences identified from screening was synthesized on Toyopearl® resin and evaluated via binding studies to select sequences that afford high product binding and recovery. The affibody-peptide interaction was also evaluated by in silico docking, which corroborated the targeting of the conserved domain. Ligand IGKQRI was validated through purification of an anti-ErbB2 affibody from an Escherichia coli lysate. The values of binding capacity (~5 mg affibody per mL of resin), affinity (KD ~1 µM), recovery and purity (64-71% and 86-91%), and resin lifetime (100 cycles) demonstrate that IGKQRI can be employed as ligand in affibody purification processes.


Asunto(s)
Proteínas Recombinantes de Fusión/metabolismo , Secuencia de Aminoácidos , Humanos , Inmunoglobulina G/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Biblioteca de Péptidos , Péptidos/química , Péptidos/metabolismo , Albúmina Sérica Humana/metabolismo , Temperatura
4.
Int J Mol Sci ; 20(20)2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31623061

RESUMEN

Screening solid-phase combinatorial libraries of bioactive compounds against fluorescently labeled target biomolecules is an established technology in ligand and drug discovery. Rarely, however, do screening methods include comprehensive strategies-beyond mere library blocking and competitive screening-to ensure binding selectivity of selected leads. This work presents a method for multiplexed solid-phase peptide library screening using a ClonePix 2 Colony Picker that integrates (i) orthogonal fluorescent labeling for positive selection against a target protein and negative selection against competitor species with (ii) semi-quantitative tracking of target vs. competitor binding for every library bead. The ClonePix 2 technology enables global at-a-glance evaluation and customization of the parameters for bead selection to ensure high affinity and selectivity of the isolated leads. A case study is presented by screening a peptide library against green-labeled human immunoglobulin G (IgG) and red-labeled host cell proteins (HCPs) using ClonePix 2 to select HCP-binding ligands for flow-through chromatography applications. Using this approach, 79 peptide ligand candidates (6.6% of the total number of ligands screened) were identified as potential HCP-selective ligands, enabling a potential rate of >3,000 library beads screened per hour.


Asunto(s)
Cromatografía de Afinidad/métodos , Descubrimiento de Drogas/métodos , Biblioteca de Péptidos , Bibliotecas de Moléculas Pequeñas , Animales , Línea Celular , Humanos , Inmunoglobulina G , Ligandos , Imagen Óptica/métodos
5.
Int J Mol Sci ; 20(7)2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30965558

RESUMEN

The growing integration of quality-by-design (QbD) concepts in biomanufacturing calls for a detailed and quantitative knowledge of the profile of impurities and their impact on the product safety and efficacy. Particularly valuable is the determination of the residual level of host cell proteins (HCPs) secreted, together with the product of interest, by the recombinant cells utilized for production. Though often referred to as a single impurity, HCPs comprise a variety of species with diverse abundance, size, function, and composition. The clearance of these impurities is a complex issue due to their cell line to cell line, product-to-product, and batch-to-batch variations. Improvements in HCP monitoring through proteomic-based methods have led to identification of a subset of "problematic" HCPs that are particularly challenging to remove, both at the product capture and product polishing steps, and compromise product stability and safety even at trace concentrations. This paper describes the development of synthetic peptide ligands capable of capturing a broad spectrum of Chinese hamster ovary (CHO) HCPs with a combination of peptide species that allow for advanced mixed-mode binding. Solid phase peptide libraries were screened for identification and characterization of peptides that capture CHO HCPs while showing minimal binding of human IgG, utilized here as a model product. Tetrameric and hexameric ligands featuring either multipolar or hydrophobic/positive amino acid compositions were found to be the most effective. Tetrameric multipolar ligands exhibited the highest targeted binding ratio (ratio of HCP clearance over IgG loss), more than double that of commercial mixed-mode and anion exchange resins utilized by industry for IgG polishing. All peptide resins tested showed preferential binding to HCPs compared to IgG, indicating potential uses in flow-through mode or weak-partitioning-mode chromatography.


Asunto(s)
Péptidos/aislamiento & purificación , Animales , Células CHO , Cromatografía de Afinidad , Cromatografía Liquida , Cricetinae , Cricetulus , Humanos , Péptidos/química , Proteómica/métodos
6.
Methods Mol Biol ; 2261: 489-506, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33421010

RESUMEN

Capture of host cell proteins (HCPs) from cell culture production harvests is critical to ensure the maximum levels specified by international regulatory bodies of product purity for therapeutic monoclonal antibodies (mAbs). Peptide ligands that selectively target the whole spectrum of the HCPs, while letting the mAb product flow through unbound, are an ideal complement to the affinity-based capture step via Protein A chromatography. In this work, we describe the development of HCP-binding peptide ligands, especially focusing on the steps of (1) peptide selection via library screening and (2) quantification of HCP removal via proteomics by mass spectrometry.


Asunto(s)
Péptidos/metabolismo , Proteínas/aislamiento & purificación , Proteómica , Animales , Células CHO , Cricetulus , Ensayo de Inmunoadsorción Enzimática , Humanos , Ligandos , Microscopía Fluorescente , Biblioteca de Péptidos , Unión Proteica , Proteínas/metabolismo , Extracción en Fase Sólida , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA