Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Rep ; 5: 335-345, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28955840

RESUMEN

Patients with Danon disease may suffer from severe cardiomyopathy, skeletal muscle dysfunction as well as varying degrees of mental retardation, in which the primary deficiency of lysosomal membrane-associated protein-2 (LAMP2) is considerably associated. Owing to the scarcity of human neurons, the pathological role of LAMP2 deficiency in neural injury of humans remains largely elusive. However, the application of induced pluripotent stem cells (iPSCs) may shed light on overcoming such scarcity. In this study, we obtained iPSCs derived from a patient carrying a mutated LAMP2 gene that is associated with Danon disease. By differentiating such LAMP2-deficient iPSCs into cerebral cortical neurons and with the aid of various biochemical assays, we demonstrated that the LAMP2-deficient neurons are more susceptible to mild oxidative stress-induced injury. The data from MTT assay and apoptotic analysis demonstrated that there was no notable difference in cellular viability between the normal and LAMP2-deficient neurons under non-stressed condition. When exposed to mild oxidative stress (10 µM H2O2), the LAMP2-deficient neurons exhibited a significant increase in apoptosis. Surprisingly, we did not observe any aberrant accumulation of autophagic materials in the LAMP2-deficient neurons under such stress condition. Our results from cellular fractionation and inhibitor blockade experiments further revealed that oxidative stress-induced apoptosis in the LAMP2-deficient cortical neurons was caused by increased abundance of cytosolic cathepsin L. These results suggest the involvement of lysosomal membrane permeabilization in the LAMP2 deficiency associated neural injury.

2.
J Clin Med ; 3(4): 1105-23, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26237594

RESUMEN

The lack of appropriate human cardiomyocyte-based experimental platform has largely hindered the study of cardiac diseases and the development of therapeutic strategies. To date, somatic cells isolated from human subjects can be reprogramed into induced pluripotent stem cells (iPSCs) and subsequently differentiated into functional cardiomyocytes. This powerful reprogramming technology provides a novel in vitro human cell-based platform for the study of human hereditary cardiac disorders. The clinical potential of using iPSCs derived from patients with inherited cardiac disorders for therapeutic studies have been increasingly highlighted. In this review, the standard procedures for generating patient-specific iPSCs and the latest commonly used cardiac differentiation protocols will be outlined. Furthermore, the progress and limitations of current applications of iPSCs and iPSCs-derived cardiomyocytes in cell replacement therapy, disease modeling, drug-testing and toxicology studies will be discussed in detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA