Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(35): e2307772120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603747

RESUMEN

Artificial cells are biomimetic structures formed from molecular building blocks that replicate biological processes, behaviors, and architectures. Of these building blocks, hydrogels have emerged as ideal, yet underutilized candidates to provide a gel-like chassis in which to incorporate both biological and nonbiological componentry which enables the replication of cellular functionality. Here, we demonstrate a microfluidic strategy to assemble biocompatible cell-sized hydrogel-based artificial cells with a variety of different embedded functional subcompartments, which act as engineered synthetic organelles. The organelles enable the recreation of increasingly biomimetic behaviors, including stimulus-induced motility, content release through activation of membrane-associated proteins, and enzymatic communication with surrounding bioinspired compartments. In this way, we showcase a foundational strategy for the bottom-up construction of hydrogel-based artificial cell microsystems which replicate fundamental cellular behaviors, paving the way for the construction of next-generation biotechnological devices.


Asunto(s)
Células Artificiales , Biomimética , Hidrogeles , Comunicación , Orgánulos
2.
Proc Natl Acad Sci U S A ; 116(34): 16711-16716, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31371493

RESUMEN

To date, reconstitution of one of the fundamental methods of cell communication, the signaling pathway, has been unaddressed in the bottom-up construction of artificial cells (ACs). Such developments are needed to increase the functionality and biomimicry of ACs, accelerating their translation and application in biotechnology. Here, we report the construction of a de novo synthetic signaling pathway in microscale nested vesicles. Vesicle-cell models respond to external calcium signals through activation of an intracellular interaction between phospholipase A2 and a mechanosensitive channel present in the internal membranes, triggering content mixing between compartments and controlling cell fluorescence. Emulsion-based approaches to AC construction are therefore shown to be ideal for the quick design and testing of new signaling networks and can readily include synthetic molecules difficult to introduce to biological cells. This work represents a foundation for the engineering of multicompartment-spanning designer pathways that can be utilized to control downstream events inside an AC, leading to the assembly of micromachines capable of sensing and responding to changes in their local environment.


Asunto(s)
Células Artificiales , Compartimento Celular , Mecanotransducción Celular , Calcio/metabolismo , Comunicación Celular/efectos de los fármacos , Compartimento Celular/efectos de los fármacos , Quelantes/farmacología , Proteínas de Escherichia coli/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Fosfolipasas A2/metabolismo
3.
Langmuir ; 35(50): 16521-16527, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31702159

RESUMEN

Dispersions of nonlamellar lipid membrane assemblies are gaining increasing interest for drug delivery and protein therapeutic application. A key bottleneck has been the lack of rational design rules for these systems linking different lipid species and conditions to defined lattice parameters and structures. We have developed robust methods to form cubosomes (nanoparticles with porous internal structures) with water channel diameters of up to 171 Å, which are over 4 times larger than archetypal cubosome structures. The water channel diameter can be tuned via the incorporation of cholesterol and the charged lipid DOPA, DOPG, or DOPS. We have found that large molecules can be incorporated into the porous cubosome structure and that these molecules can interact with the internal cubosome membrane. This offers huge potential for accessible encapsulation and protection of biomolecules and development of confined interfacial reaction environments.


Asunto(s)
Colesterol/química , Ingeniería , Glicerofosfolípidos/química
4.
Angew Chem Int Ed Engl ; 57(39): 12656-12660, 2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30095209

RESUMEN

Two-dimensional (2D) layered graphitic carbon nitride (gCN) nanosheets offer intriguing electronic and chemical properties. However, the exfoliation and functionalisation of gCN for specific applications remain challenging. We report a scalable one-pot reductive method to produce solutions of single- and few-layer 2D gCN nanosheets with excellent stability in a high mass yield (35 %) from polytriazine imide. High-resolution imaging confirmed the intact crystalline structure and identified an AB stacking for gCN layers. The charge allows deliberate organic functionalisation of dissolved gCN, providing a general route to adjust their properties.

5.
Phys Chem Chem Phys ; 19(13): 9199-9209, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28317964

RESUMEN

Lanthanide salts have been studied for many years, primarily in Nuclear Magnetic Resonance (NMR) experiments of mixed lipid-protein systems and more recently to study lipid flip-flop in model membrane systems. It is well recognised that lanthanide salts can influence the behaviour of both lipid and protein systems, however a full molecular level description of lipid-lanthanide interactions is still outstanding. Here we present a study of lanthanide-bilayer interactions, using molecular dynamics computer simulations, fluorescence electrostatic potential experiments and nuclear magnetic resonance. Computer simulations reveal the microscopic structure of DMPC lipid bilayers in the presence of Yb3+, and a surprising ability of the membranes to adsorb significant concentrations of Yb3+ without disrupting the overall membrane structure. At concentrations commonly used in NMR experiments, Yb3+ ions bind strongly to 5 lipids, inducing a small decrease of the area per lipid and a slight increase of the ordering of the aliphatic chains and the bilayer thickness. The area compressibility modulus increases by a factor of two, with respect to the free-salt case, showing that Yb3+ ions make the bilayer more rigid. These modifications of the bilayer properties should be taken into account in the interpretation of NMR experiments.

6.
Soft Matter ; 12(37): 7731-7734, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27722718

RESUMEN

We report a new platform technology to systematically assemble droplet interface bilayer (DIB) networks in user-defined 3D architectures from cell-sized droplets using optical tweezers. Our OptiDIB platform is the first demonstration of optical trapping to precisely construct 3D DIB networks, paving the way for the development of a new generation of modular bio-systems.

7.
Langmuir ; 31(10): 2979-87, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25738977

RESUMEN

A large variety of data exists on lipid phase behavior; however, it is mostly in nonbuffered systems over nonbiological temperature ranges. We present biophysical data on lipid mixtures of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylethanolamine (DOPE), and lysophosphatidylcholine (LysoPC) examining their behaviors in excess water and buffer systems over the temperature range 4-34 °C. These mixtures are commonly used to investigate the effects of spontaneous curvature on integral membrane proteins. Using small-angle X-ray scattering (SAXS) and (31)P NMR, we observed lamellar and vesicle phases, with the buffer causing an increase in the layer spacing. Increasing amounts of DOPE in a DOPC bilayer decreased the layer spacing of the mesophase, while the opposite trend was observed for increasing amounts of LysoPC. (31)P static NMR was used to analyze the DOPC:LysoPC samples to investigate the vesicle sizes present, with evidence of vesicle budding observed at LysoPC concentrations above 30 mol %. NMR line shapes were fitted using an adapted program accounting for the distortion of the lipids within the magnetic field. The distortion of the vesicle, because of magnetic susceptibility, varied with LysoPC content, and a discontinuity was found in both the water and buffer samples. Generally, the distortion increased with LysoPC content; however, at a ratio of DOPC:LysoPC 60:40, the sample showed a level of distortion of the vesicle similar to that of pure DOPC. This implies an increased flexibility in the membrane at this point. Commonly, the assumption is that for increasing LysoPC concentration there is a reduction in membrane tension, implying that estimations of membrane tension based on spontaneous curvature assumptions may not be accurate.


Asunto(s)
Membrana Dobles de Lípidos/química , Lisofosfatidilcolinas/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Tampones (Química) , Membrana Celular/química , Espectroscopía de Resonancia Magnética
8.
Langmuir ; 31(12): 3678-86, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25742392

RESUMEN

Ceramides are a group of sphingolipids that act as highly important signaling molecules in a variety of cellular processes including differentiation and apoptosis. The predominant in vivo synthetic pathway for ceramide formation is via sphingomyelinase catalyzed hydrolysis of sphingomyelin. The biochemistry of this essential pathway has been studied in detail; however, there is currently a lack of information on the structural behavior of sphingomyelin- and ceramide-rich model membrane systems, which is essential for developing a bottom-up understanding of ceramide signaling and platform formation. We have studied the lyotropic phase behavior of sphingomyelin-ceramide mixtures in excess water as a function of temperature (30-70 °C) and pressure (1-200 MPa) by small- and wide-angle X-ray scattering. At low ceramide concentrations the mixtures form the ripple gel phase (P(ß)') below the gel transition temperature for sphingomyelin, and this observation has been confirmed by atomic force microscopy. Formation of the ripple gel phase can also be induced at higher temperatures via the application of hydrostatic pressure. At high ceramide concentration an inverse hexagonal phase (HII) is formed coexisting with a cubic phase.


Asunto(s)
Ceramidas/química , Transición de Fase , Presión , Esfingomielinas/química , Temperatura , Animales
9.
Soft Matter ; 11(16): 3279-86, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25790335

RESUMEN

Lipid bicontinuous cubic phases have attracted enormous interest as bio-compatible scaffolds for use in a wide range of applications including membrane protein crystallisation, drug delivery and biosensing. One of the major bottlenecks that has hindered exploitation of these structures is an inability to create targeted highly swollen bicontinuous cubic structures with large and tunable pore sizes. In contrast, cubic structures found in vivo have periodicities approaching the micron scale. We have been able to engineer and control highly swollen bicontinuous cubic phases of spacegroup Im3m containing only lipids by (a) increasing the bilayer stiffness by adding cholesterol and (b) inducing electrostatic repulsion across the water channels by addition of anionic lipids to monoolein. By controlling the composition of the ternary mixtures we have been able to achieve lattice parameters up to 470 Å, which is 5 times that observed in pure monoolein and nearly twice the size of any lipidic cubic phase reported previously. These lattice parameters significantly exceed the predicted maximum swelling for bicontinuous cubic lipid structures, which suggest that thermal fluctuations should destroy such phases for lattice parameters larger than 300 Å.


Asunto(s)
Lípidos/química , Colesterol/química , Glicéridos/química , Fosfatidilgliceroles/química , Electricidad Estática , Agua/química
10.
Phys Chem Chem Phys ; 17(24): 15534-7, 2015 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-25932977

RESUMEN

Whereas spatial organisation of function is ubiquitous in biology, it has been lacking in artificial cells. We rectify this by using multi-compartment vesicles as chassis for artificial cells, allowing distinct biological processes to be isolated in space. This is demonstrated by in vitro synthesis of two proteins in predefined vesicle regions.


Asunto(s)
Células Artificiales/metabolismo , Reactores Biológicos , Biosíntesis de Proteínas , Proteínas/metabolismo , Células Artificiales/química , Compartimento Celular , Proteínas/química
11.
J Am Chem Soc ; 134(13): 5746-9, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22428921

RESUMEN

Mechanical properties of biological membranes are known to regulate membrane protein function. Despite this, current models of protein communication typically feature only direct protein-protein or protein-small molecule interactions. Here we show for the first time that, by harnessing nanoscale mechanical energy within biological membranes, it is possible to promote controlled communication between proteins. By coupling lipid-protein modules and matching their response to the mechanical properties of the membrane, we have shown that the action of phospholipase A(2) on acyl-based phospholipids triggers the opening of the mechanosensitive channel, MscL, by generating membrane asymmetry. Our findings confirm that the global physical properties of biological membranes can act as information pathways between proteins, a novel mechanism of membrane-mediated protein-protein communication that has important implications for (i) the underlying structure of signaling pathways, (ii) our understanding of in vivo communication networks, and (iii) the generation of building blocks for artificial protein networks.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Ingeniería Genética/métodos , Canales Iónicos/metabolismo , Fosfolipasas A2 Secretoras/metabolismo , Fenómenos Biomecánicos , Proteínas de Escherichia coli/genética , Canales Iónicos/genética , Membrana Dobles de Lípidos/metabolismo , Fosfolípidos/metabolismo , Unión Proteica
12.
Lab Chip ; 22(5): 972-985, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35107110

RESUMEN

Simple diffusion of molecular entities through a phospholipid bilayer, is a phenomenon of great importance to the pharmaceutical and agricultural industries. Current model lipid systems to probe this typically only employ fluorescence as a readout, thus limiting the range of assessable chemical matter that can be studied. We report a new technology platform, the UV-DIB, which facilitates label free measurement of small molecule translocation rates. This is based upon the coupling of droplet interface bilayer technology with implemented fiber optics to facilitate analysis via ultraviolet spectroscopy, in custom designed PMMA wells. To improve on current DIB technology, the platform was designed to be reusable, with a high sampling rate and a limit of UV detection in the low µM regime. We demonstrate the use of our system to quantify passive diffusion in a reproducible and rapid manner where the system was validated by investigating multiple permeants of varying physicochemical properties across a range of lipid interfaces, each demonstrating differing kinetics. Our system permits the interrogation of structural dependence on the permeation rate of a given compound. We present this ability from two structural perspectives, that of the membrane, and the permeant. We observed a reduction in permeability between pure DOPC and DPhPC interfaces, concurring with literature and demonstrating our ability to study the effects of lipid composition on permeability. In relation to the effects of permeant structure, our device facilitated the rank ordering of various compounds from the xanthine class of compounds, where the structure of each permeant differed by a single group alteration. We found that DIBs were stable up to 5% DMSO, a molecule often used to aid solubilisation of pharmaceutical and agrochemical compounds. The ability of our device to rank-order compounds with such minor structural differences provides a level of precision that is rarely seen in current, industrially applied technologies.


Asunto(s)
Membrana Dobles de Lípidos , Fosfolípidos , Difusión , Cinética , Membrana Dobles de Lípidos/química , Permeabilidad , Fosfolípidos/química
13.
Chem Sci ; 12(6): 2138-2145, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34163978

RESUMEN

Droplet microcompartments linked by lipid bilayers show great promise in the construction of synthetic minimal tissues. Central to controlling the flow of information in these systems are membrane proteins, which can gate in response to specific stimuli in order to control the molecular flux between membrane separated compartments. This has been demonstrated with droplet interface bilayers (DIBs) using several different membrane proteins combined with electrical, mechanical, and/or chemical activators. Here we report the activation of the bacterial mechanosensitive channel of large conductance (MscL) in a dioleoylphosphatidylcholine:dioleoylphosphatidylglycerol DIB by controlling membrane asymmetry. We show using electrical measurements that the incorporation of lysophosphatidylcholine (LPC) into one of the bilayer leaflets triggers MscL gating in a concentration-dependent manner, with partial and full activation observed at 10 and 15 mol% LPC respectively. Our findings could inspire the design of new minimal tissues where flux pathways are dynamically defined by lipid composition.

14.
J R Soc Interface ; 18(185): 20210698, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34875877

RESUMEN

The interactions between small molecules and keratins are poorly understood. In this paper, a nuclear magnetic resonance method is presented to measure changes in the 1H T1 relaxation times of small molecules in human hair keratin to quantify their interaction with the fibre. Two populations of small-molecule compounds were identified with distinct relaxation times, demonstrating the partitioning of the compounds into different keratin environments. The changes in relaxation time for solvent in hair compared with bulk solvent were shown to be related to the molecular weight (MW) and the partition coefficient, LogP, of the solvent investigated. Compounds with low MWs and high hydrophilicities had greater reductions in their T1 relaxation times and therefore experienced increased interactions with the hair fibre. The relative population sizes were also calculated. This is a significant step towards modelling the behaviour of small molecules in keratinous materials and other large insoluble fibrous proteins.


Asunto(s)
Cabello , Queratinas , Humanos , Espectroscopía de Resonancia Magnética , Peso Molecular , Espectroscopía de Protones por Resonancia Magnética
15.
Chem Soc Rev ; 38(9): 2509-19, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19690732

RESUMEN

The field of drug-membrane interactions is one that spans a wide range of scientific disciplines, from synthetic chemistry, through biophysics to pharmacology. Cell membranes are complex dynamic systems whose structures can be affected by drug molecules and in turn can affect the pharmacological properties of the drugs being administered. In this tutorial review we aim to provide a guide for those new to the area of drug-membrane interactions and present an introduction to areas of this topic which need to be considered. We address the lipid composition and structure of the cell membrane and comment on the physical forces present in the membrane which may impact on drug interactions. We outline methods by which drugs may cross or bind to this membrane, including the well understood passive and active transport pathways. We present a range of techniques which may be used to study the interactions of drugs with membranes both in vitro and in vivo and discuss the advantages and disadvantages of these techniques and highlight new methods being developed to further this field.


Asunto(s)
Membrana Celular , Interacciones Farmacológicas/fisiología , Animales , Transporte Biológico/fisiología , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Humanos , Modelos Biológicos , Análisis Espectral/métodos
16.
Chem Commun (Camb) ; 56(92): 14499-14502, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33150883

RESUMEN

Cholesterol is a crucial component of biological membranes and can interact with other membrane components through hydrogen bonding. NMR spectroscopy has been used previously to investigate this bonding, however this study represents the first 17O NMR spectroscopy study of isotopically enriched cholesterol. We demonstrate the 17O chemical shift is dependent on hydrogen bonding, providing a novel method for the study of cholesterol in bilayers.


Asunto(s)
Colesterol/química , Membrana Dobles de Lípidos/química , Isótopos de Oxígeno/química , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Solventes/química
17.
J Am Chem Soc ; 131(5): 1678-9, 2009 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-19146371

RESUMEN

Lipids that are found in cell membranes form a variety of self-assembled phases in the presence of water. Many of these structures are liquid-crystalline with structural motifs mirrored in cells and organelles and can be exploited in the delivery of drugs and genes. We report the discovery of a lyotropic liquid crystalline phase based on a 3-D hexagonal close-packed arrangement of inverse micelles, of space group P6(3)/mmc. This is the first new inverse lyotropic liquid-crystalline phase to be reported for two decades and is the only known lyotropic phase whose structure consists of a close packing of identical inverse micelles.


Asunto(s)
Colesterol/química , Diglicéridos/química , Lípidos de la Membrana/química , Micelas , Fosfatidilcolinas/química , Cristales Líquidos/química , Modelos Moleculares , Dispersión del Ángulo Pequeño , Difracción de Rayos X
18.
J Colloid Interface Sci ; 538: 75-82, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30500469

RESUMEN

The effect of glycerol with sodium chloride (NaCl) on the phase behaviour of sodium dodecyl sulfate (SDS) near the Krafft point was studied by surface tension analysis using the pendant drop method. The critical micelle concentration (CMC) and Krafft Temperature (TK) of SDS in water: glycerol mixtures, across the full composition range, and in NaCl solutions within 0.005-0.1 M were obtained. The pendant drop method successfully allowed us to determine the Krafft point of SDS in high glycerol systems where other traditional methods (e.g. conductivity) have been ineffective. Overall the addition of glycerol increases the CMC and the TK, thus shifting the Krafft point of SDS to higher temperatures (increasing crystallisation temperatures) and higher SDS content in the presence of glycerol, which is interpreted as a result of the reduction in solvent polarity which opposes micellization. The addition of NaCl to the SDS - water-glycerol systems brings the CMC back down, while having no significant effect on the TK. Our results establish a robust route for tuning the Krafft point of model surfactant SDS by adjusting solvent quality and salt content.

19.
Soft Matter ; 4(2): 263-267, 2008 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-32907239

RESUMEN

The role of cholesterol (Chol) in promoting lamellar phase formation in mixtures with 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (Lyso-PPC) in excess water was investigated using multinuclear solid-state NMR and X-ray scattering. It was found that mixtures containing Chol and Lyso-PPC form a liquid-ordered (Lo) lamellar phase over a range of temperatures and concentrations, as previously observed in mixtures of Chol with various diacylphospholipids. The maximum quadrupolar splitting of the 2H-NMR powder patterns for samples containing per-deuterated Lyso-PPC were 40-50 kHz which is strongly indicative of an Lo phase. This evidence was supported by wide angle X-ray scattering data which showed a characteristic diffuse peak centred at 4.2 Å. The Lo phase coexists with an isotropic Lyso-PPC phase at Chol concentrations up to 70 mol% Chol, and with Chol crystals at Chol concentrations above this value. Below 70 mol% Chol, an increase in the concentration of Chol in the system caused a corresponding increase in the proportion of the Lo phase present compared with the amount of isotropic Lyso-PPC. The chemical-shift anisotropy (CSA) of the static 31P-NMR spectra of the Lo phase showed the symmetry of a lamellar phase, but the linewidth, Δσ, was much narrower than CSA powder patterns obtained for diacylphospholipids in similar conditions, being ∼20 ppm as opposed to ∼40 ppm, respectively.

20.
Sci Rep ; 8(1): 4564, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540757

RESUMEN

There is increasing interest in constructing artificial cells by functionalising lipid vesicles with biological and synthetic machinery. Due to their reduced complexity and lack of evolved biochemical pathways, the capabilities of artificial cells are limited in comparison to their biological counterparts. We show that encapsulating living cells in vesicles provides a means for artificial cells to leverage cellular biochemistry, with the encapsulated cells serving organelle-like functions as living modules inside a larger synthetic cell assembly. Using microfluidic technologies to construct such hybrid cellular bionic systems, we demonstrate that the vesicle host and the encapsulated cell operate in concert. The external architecture of the vesicle shields the cell from toxic surroundings, while the cell acts as a bioreactor module that processes encapsulated feedstock which is further processed by a synthetic enzymatic metabolism co-encapsulated in the vesicle.


Asunto(s)
Células Artificiales/metabolismo , Orgánulos/metabolismo , Reactores Biológicos , Membrana Dobles de Lípidos , Técnicas Analíticas Microfluídicas/instrumentación , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA