Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Chemistry ; 30(2): e202301791, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37937983

RESUMEN

Shapeable and flexible pressure sensors with superior mechanical and electrical properties are of major interest as they can be employed in a wide range of applications. In this regard, elastomer-based composites incorporating carbon nanomaterials in the insulating matrix embody an appealing solution for designing flexible pressure sensors with specific properties. In this study, PDMS chains of different molecular weight were successfully functionalized with benzoxazine moieties in order to thermally cure them without adding a second component, nor a catalyst or an initiator. These precursors were then blended with 1 weight percent of multi-walled carbon nanotubes (CNTs) using an ultrasound probe, which induced a transition from a liquid-like to a gel-like behavior as CNTs generate an interconnected network within the matrix. After curing, the resulting nanocomposites exhibit mechanical and electrical properties making them highly promising materials for pressure-sensing applications.

2.
Chemistry ; 30(2): e202302545, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37840008

RESUMEN

In recent years, there has been significant focus on investigating and controlling chiral self-assembly, specifically in the context of enantiomeric separation. This study explores the self-assembly behavior of 4-dodecyl-3,6-di(2-pyridyl)pyridazine (DPP-C12) at the interface between heptanoic acid (HA) and highly oriented pyrolytic graphite (HOPG) using a combination of scanning tunneling microscopy (STM) and multiscale molecular modeling. The self-assembled monolayer structure formed by DPP-C12 is periodic in one direction, but aperiodic in the direction orthogonal to it. These structures resemble 1D disordered racemic compounds. Upon introducing palladium [Pd(II)] ions, complexing with DPP-C12, these 1D disordered racemic compounds spontaneously transform into 2D racemic conglomerates, which is rationalized with the assistance of force-field simulations. Our findings provide insights into the regulation of two-dimensional chirality.

3.
J Am Chem Soc ; 145(2): 1194-1205, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36576950

RESUMEN

Two-dimensional (2D) chirality has been actively studied in view of numerous applications of chiral surfaces such as in chiral resolutions and enantioselective catalysis. Here, we report on the expression and amplification of chirality in hybrid 2D metallosupramolecular networks formed by a nucleobase derivative. Self-assembly of a guanine derivative appended with a pyridyl node was studied at the solution-graphite interface in the presence and absence of coordinating metal ions. In the absence of coordinating metal ions, a monolayer that is representative of a racemic compound was obtained. This system underwent spontaneous resolution upon addition of a coordinating ion and led to the formation of a racemic conglomerate. The spontaneous resolution could also be achieved upon addition of a suitable guest molecule. The mirror symmetry observed in the formation of the metallosupramolecular networks could be broken via the use of an enantiopure solvent, which led to the formation of a globally homochiral surface.


Asunto(s)
Metales , Estereoisomerismo , Catálisis
4.
J Am Chem Soc ; 143(29): 11080-11087, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34283574

RESUMEN

We report on the detection and stabilization of a previously unknown two-dimensional (2D) pseudopolymorph of an alkoxy isophthalic acid using lateral nanoconfinement. The self-assembled molecular networks formed by the isophthalic acid derivative were studied at the interface between covalently modified graphite and an organic solvent. When self-assembled on graphite with moderate surface coverage of covalently bound aryl groups, a previously unknown metastable pseudopolymorph was detected. This pseudopolymorph, which was presumably "trapped" in between the surface bound aryl groups, underwent a time-dependent phase transition to the stable polymorph typically observed on pristine graphite. The stabilization of the pseudopolymorph was then achieved by using an alternative nanoconfinement strategy, where the domains of the pseudopolymorph could be formed and stabilized by restricting the self-assembly in nanometer-sized shallow compartments produced by STM-based nanolithography carried out on a graphite surface with a high density of covalently bound aryl groups. These experimental results are supported by molecular mechanics and molecular dynamics simulations, which not only provide important insight into the relative stabilities of the different structures, but also shed light onto the mechanism of the formation and stabilization of the pseudopolymorph under nanoscopic lateral confinement.


Asunto(s)
Grafito/química , Nanoestructuras/química , Ácidos Ftálicos/análisis , Simulación de Dinámica Molecular , Estructura Molecular
5.
Molecules ; 25(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947792

RESUMEN

Chlorophyll a derivatives were integrated in "all solid-state" dye sensitized solar cells (DSSCs) with a mesoporous TiO2 electrode and 2',2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene as the hole-transport material. Despite modest power conversion efficiencies (PCEs) between 0.26% and 0.55% achieved for these chlorin dyes, a systematic investigation was carried out in order to elucidate their main limitations. To provide a comprehensive understanding of the parameters (structure, nature of the anchoring group, adsorption …) and their relationship with the PCEs, density functional theory (DFT) calculations, optical and photovoltaic studies and electron paramagnetic resonance analysis exploiting the 4-carboxy-TEMPO spin probe were combined. The recombination kinetics, the frontier molecular orbitals of these DSSCs and the adsorption efficiency onto the TiO2 surface were found to be the key parameters that govern their photovoltaic response.


Asunto(s)
Clorofila/química , Energía Solar , Titanio/química , Porosidad
6.
Langmuir ; 35(24): 7970-7977, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31117733

RESUMEN

To rationalize how the gelation ability of a low molecular weight gelator is influenced by its molecular structure, we performed extensive solubility tests of a group of thiazole-based gelators and made use of Hansen solubility parameter formalism. We observe that the increase of a linear alkyl chain in these gelators promotes an increase of the radius of the gelation sphere as well as a gradual shift of its center to lower values of the polar (δP) and hydrogen bonding (δH) components. The molecular packing within the fibers and the crystal habit were determined by a combination of X-ray diffraction and molecular modeling. We attribute the gradual and linear shift of the gelation sphere to the fact that all of the studied gelators share the same molecular packing, so that an increasing length of the alkyl chain reduces the proportion of polar groups at the surface, resulting in a gradual increase in the contact between apolar parts of the fiber and the solvent.

7.
Faraday Discuss ; 204: 215-231, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-28840217

RESUMEN

Chiral induction in self-assembled monolayers has garnered considerable attention in the recent past, not only due to its importance in chiral resolution and enantioselective heterogeneous catalysis but also because of its relevance to the origin of homochirality in life. Here, we demonstrate the emergence of homochirality in a supramolecular low-density network formed by achiral molecules at the interface of a chiral solvent and an atomically-flat achiral substrate. We focus on the impact of structure and functionality of the adsorbate and the chiral solvent on the chiral induction efficiency in self-assembled physisorbed monolayers, as revealed by scanning tunneling microscopy. Different induction mechanisms are proposed and evaluated, with the assistance of advanced molecular modeling simulations.

8.
Phys Chem Chem Phys ; 19(43): 29389-29401, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29075698

RESUMEN

We report (time-dependent) density functional theory calculations characterizing the changes in the electronic and optical properties of oligothiophene dyes when grafted on a titania surface via a carboxylic acid or catechol moiety as anchoring group, in relation to their use in dye-sensitized solar cells. The broadening of the LUMO level of the compounds upon adsorption has been extracted from the computed electronic structures and used to estimate electron injection times into the conduction band of the oxide. The strongly coupled carboxylic-containing dyes lead to faster electron injection times compared to catechol-substituted dyes. This difference is ascribed to the electron-donating character of the catechol moiety that polarizes the dye LUMO away from the dye@titania interface. The absorption spectra simulated at the TD-DFT level indicate that the grafted carboxylic-thiophene dyes undergo an indirect injection mechanism (type I) in which an intramolecular excitation is created before the charge is transferred to titania. In contrast, catechol dyes with a short conjugation length for the thiophene backbone are type II sensitizers exhibiting a direct injection mechanism leading to a direct photoexcitation from the dye HOMO to the titania conduction band. A mixed character prevails for the injection in the case of catechol dyes containing a longer oligothiophene chain.

9.
Soft Matter ; 12(37): 7824-7838, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27722677

RESUMEN

As the benzene 1,3,5-tricarboxamide (BTA) moiety is commonly used as the central assembling unit for the construction of functionalized supramolecular architectures, strategies to tailor the nature and stability of BTA assemblies are needed. The assembly properties of a library of structurally simple BTAs derived from amino dodecyl esters (ester BTAs, 13 members) have been studied, either in the bulk or in cyclohexane solutions, by means of a series of analytical methods (NMR, DSC, POM, FT-IR, UV-Vis, CD, ITC, high-sensitivity DSC, SANS). Two types of hydrogen-bonded species have been identified and characterized: the expected amide-bonded helical rods (or stacks) that are structurally similar to those formed by BTAs with simple alkyl side chains (alkyl BTAs), and ester-bonded dimers in which the BTAs are connected by means of hydrogen bonds linking the amide N-H and the ester C[double bond, length as m-dash]O. MM/MD calculations coupled with simulations of CD spectra allow for the precise determination of the molecular arrangement and of the hydrogen bond pattern of these dimers. Our study points out the crucial influence of the substituent attached on the amino-ester α-carbon on the relative stability of the rod-like versus dimeric assemblies. By varying this substituent, one can precisely tune the nature of the dominant hydrogen-bonded species (stacks or dimers) in the neat compounds and in cyclohexane over a wide range of temperatures and concentrations. In the neat BTAs, stacks are stable up to 213 °C and dimers above 180 °C whilst in cyclohexane stacks form at c* > 3 × 10-5 M at 20 °C and dimers are stable up to 80 °C at 7 × 10-6 M. Ester BTAs that assemble into stacks form a liquid-crystalline phase and yield gels or viscous solutions in cyclohexane, demonstrating the importance of controlling the structure of these assemblies. Our systematic study of these structurally similar ester BTAs also allows for a better understanding of how a single atom or moiety can impact the nature and stability of BTA aggregates, which is of importance for the future development of functionalized BTA supramolecular polymers.

10.
Nat Mater ; 13(2): 190-4, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24317188

RESUMEN

Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being suitable for thermoelectric applications. We measure the thermoelectric properties of various poly(3,4-ethylenedioxythiophene) samples, and observe a marked increase in the Seebeck coefficient when the electrical conductivity is enhanced through molecular organization. This initiates the transition from a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics.

11.
Soft Matter ; 11(32): 6460-71, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26179509

RESUMEN

The combination of DNA and π-conjugated polyelectrolytes (CPEs) represents a promising approach to develop DNA hybridization biosensors, with potential applications for instance in the detection of DNA lesions and single-nucleotide polymorphisms. Here we exploit the remarkable optical properties of a cationic poly[3-(6'-(trimethylphosphonium)hexyl)thiophene-2,5-diyl] (CPT) to decipher the self-assembly of DNA and CPT. The ssDNA/CPT complexes have chiroptical signatures in the CPT absorption region that are strongly dependent on the DNA sequence, which we relate to differences in supramolecular interactions between the thiophene monomers and the various nucleobases. By studying DNA-DNA hybridization and melting processes on preformed ssDNA/CPT complexes, we observe sequence-dependent mechanisms that can yield DNA-condensed aggregates. Heating-cooling cycles show that non-equilibrium mixtures can form, noticeably depending on the working sequence of the hybridization experiment. These results are of high importance for the use of π-conjugated polyelectrolytes in DNA hybridization biosensors and in polyplexes.


Asunto(s)
ADN/química , Compuestos Organofosforados/química , Polímeros/química , Tiofenos/química , Técnicas Biosensibles , Electrólitos/química , Desnaturalización de Ácido Nucleico , Compuestos Organofosforados/síntesis química , Tiofenos/síntesis química
12.
Langmuir ; 30(1): 358-68, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24328504

RESUMEN

The improvement of the (bio)adhesive properties of elastomeric polydimethylsiloxane (PDMS) coatings is reported. This is achieved by a surface modification consisting of the incorporation of block copolymers containing a PDMS block and a poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) block in a PDMS matrix, followed by matrix cross-linking and immersion of the obtained materials in water. Contact angle measurements (CA), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) showed the presence of the PDMAEMA block at the surface, drastic morphology changes, and improved adhesion properties after immersion in water. Finally, underwater bioadhesion tests show that mussels adhere only to block copolymer-filled coatings and after immersion in water, i.e., when the PDMAEMA blocks have been brought to the coating surface. These observations highlight the significant role of hydrophilic groups in the surface modification of silicone coatings.


Asunto(s)
Dimetilpolisiloxanos/química , Siliconas/química , Adsorción , Animales , Bivalvos , Dimetilpolisiloxanos/síntesis química , Ensayo de Materiales , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
13.
Langmuir ; 30(38): 11340-7, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25188446

RESUMEN

TiO2/conjugated polymers are promising materials in solar energy conversion where efficient photoinduced charge transfers are required. Here, a "grafting-from" approach for the synthesis of TiO2 nanoparticles supported with conjugated polymer brushes is presented. Poly(3-hexylthiophene) (P3HT), a benchmark material for organic electronics, was selectively grown from TiO2 nanoparticles by surface-initiated Kumada catalyst-transfer polycondensation. The grafting of the polymer onto the surface of the TiO2 nanoparticles by this method was demonstrated by (1)H and (13)C solid-state NMR, X-ray photoelectron spectrometry, thermogravimetric analysis, transmission electron microscopy, and UV-visible spectroscopy. Sedimentation tests in tetrahydrofuran revealed improved dispersion stability for the TiO2@P3HT hybrid material. Films were produced by solvent casting, and the quality of the dispersion of the modified TiO2 nanoparticles was evaluated by atomic force microscopy. The dispersion of the P3HT-coated TiO2 NPs in the P3HT matrix was found to be homogeneous, and the fibrillar structure of the P3HT matrix was maintained which is favorable for charge transport. Fluorescence quenching measurements on these hybrid materials in CHCl3 indicated improved photoinduced electron-transfer efficiency. All in all, better physicochemical properties for P3HT/TiO2 hybrid material were reached via the surface-initiated "grafted-from" approach compared to the "grafting-onto" approach.

14.
J Phys Chem A ; 118(9): 1576-94, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24552403

RESUMEN

The UV-vis electronic absorption and fluorescence emission properties of 8-halogenated (Cl, Br, I) difluoroboron dipyrrin (or 8-haloBODIPY) dyes and their 8-(C, N, O, S) substituted analogues are reported. The nature of the meso-substituent has a significant influence on the spectral band positions, the fluorescence quantum yields, and lifetimes. As a function of the solvent, the spectral maxima of all the investigated dyes are located within a limited wavelength range. The spectra of 8-haloBODIPYs display the narrow absorption and fluorescence emission bands and the generally quite small Stokes shifts characteristic of classic difluoroboron dipyrrins. Conversely, fluorophores with 8-phenylamino (7), 8-benzylamino (8), 8-methoxy (9), and 8-phenoxy (10) groups emit in the blue range of the visible spectrum and generally have larger Stokes shifts than common BODIPYs, whereas 8-(2-phenylethynyl)BODIPY (6) has red-shifted spectra compared to ordinary BODIPY dyes. Fluorescence lifetimes for 6, 8, and 10 have been measured for a large set of solvents and the solvent effect on their absorption and emission maxima has been analyzed using the generalized Catalán solvent scales. Restricted rotation about the C8-N bond in 7 and 8 has been observed via temperature dependent (1)H NMR spectroscopy, whereas for 10 the rotation about the C8-O bond is not hindered. The crystal structure of 8 demonstrates that the short C8-N bond has a significant double character and that this N atom exhibits a trigonal planar geometry. The crystal structure of 10 shows a short C8-O bond and an intramolecular C-H···π interaction. Quantum-chemical calculations have been performed to assess the effect of the meso-substituent on the spectroscopic properties.

15.
J Am Chem Soc ; 135(26): 9811-9, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23738900

RESUMEN

With the aim of achieving surface-mediated enantioselective adsorption, the self-assembly of chiral oligo(p-phenylenevinylene) (OPV3T) with nucleosides is investigated at the liquid/solid interface by means of scanning tunneling microscopy and molecular modeling. OPV3T enantiomers form mirror related hexameric rosette patterns. The DNA nucleoside, thymidine, does not self-assemble into stable adlayers but coadsorbs with OPV3T on the surface, leading to a pattern transformation of OPV3T from rosettes to dimers, and a change in chiral expression as well. Diastereoselective recognition between OPV3T and thymidine enantiomers can be used to resolve thymidine enantiomers at an achiral surface with an OPV3T enantiomer as the resolving agent. The impact of molar ratio and concentration on the self-assembly and chiral resolution is systematically investigated. Because there is no interaction between OPV3T and thymidine in solution, the liquid/solid interface acts as the platform for the chiral resolution of thymidine enantiomers.


Asunto(s)
Polivinilos/química , Timidina/química , Adsorción , Modelos Moleculares , Estructura Molecular , Polivinilos/síntesis química , Estereoisomerismo , Propiedades de Superficie
16.
Photochem Photobiol Sci ; 12(5): 835-47, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23396360

RESUMEN

The steady-state, UV-vis electronic absorption and fluorescence emission properties of a large set of 3-aryl and 3,5-diaryl substituted difluoroboron dipyrromethene dyes obtained via direct, palladium-catalyzed C-H (het)arylation of the BODIPY core are reported. The spectra display the narrow absorption and fluorescence emission bands and the generally quite small Stokes shifts characteristic of classic difluoroboron dipyrrins. As a function of the solvent, the spectral maxima are located within a very narrow wavelength range and are slightly red-shifted with increasing solvent polarizability, which is shown to be the crucial parameter influencing the wavelength position of the maxima. The extended π-conjugation in the 3,5-diaryl products always leads to bathochromically shifted absorption and emission spectra compared to those of the 3-aryl analogues. The derivative with a 3-mesityl substituent has blue-shifted spectra in comparison to its 3-phenyl substituted analogue, reflecting the diminished π-conjugation in the former due to steric strain. The nature of the meso-aryl has only a small effect on the spectral positions but affects the fluorescence quantum yield Φ. The majority of the dyes have high Φ (>0.85), except the compounds with meso-phenyl and meso-(p-nitrophenyl) substituents. Quantum-chemical calculations were performed to evaluate the differences in spectroscopic properties upon substitution of the BODIPY core and to compare them with the corresponding experimental results.

17.
J Phys Chem A ; 117(10): 2082-92, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23418927

RESUMEN

Polyphenols (synthetically modified or directly provided by human diet) scavenge free radicals by H-atom transfer and may thus decrease noxious effects due to oxidative stress. Free radical scavenging by polyphenols has been widely theoretically studied from the thermodynamic point of view whereas the kinetic point of view has been much less addressed. The present study describes kinetic-based structure-activity relationship for quercetin. This compound is very characteristic of the wide flavonoid subclass of polyphenols. H-atom transfer is a mechanism based on either atom or electron transfer. This is analyzed here by quantum chemical calculations, which support the knowledge acquired from experimental studies. The competition between the different processes is discussed in terms of the nature of the prereaction complexes, the pH, the formation of activated-deprotonated forms, and the atom- and electron-transfer efficiency. The role of the catechol moiety and the 3-OH group of quercetin as scavengers of different types of free radicals (CH3OO(•), CH3O(•), (•)OH, and (•)CH2OH) is rationalized. Identifying the exact mechanism and accurately evaluating kinetics is of fundamental importance to understand antioxidant behavior in physiological environments.


Asunto(s)
Catecoles/química , Electrones , Depuradores de Radicales Libres/química , Radicales Libres/antagonistas & inhibidores , Polifenoles/química , Quercetina/química , Transporte de Electrón , Concentración de Iones de Hidrógeno , Cinética , Estructura Molecular , Teoría Cuántica , Soluciones , Relación Estructura-Actividad , Termodinámica
18.
Micron ; 169: 103444, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36965270

RESUMEN

High-resolution transmission electron microscopy (TEM) of organic crystals, such as Lead Phthalocyanine (PbPc), is very challenging since these materials are prone to electron beam damage leading to the breakdown of the crystal structure during investigation. Quantification of the damage is imperative to enable high-resolution imaging of PbPc crystals with minimum structural changes. In this work, we performed a detailed electron diffraction study to quantitatively measure degradation of PbPc crystals upon electron beam irradiation. Our study is based on the quantification of the fading intensity of the spots in the electron diffraction patterns. At various incident dose rates (e/Å2/s) and acceleration voltages, we experimentally extracted the decay rate (1/s), which directly correlates with the rate of beam damage. In this manner, a value for the critical dose (e/Å2) could be determined, which can be used as a measure to quantify beam damage. Using the same methodology, we explored the influence of cryogenic temperatures, graphene TEM substrates, and graphene encapsulation in prolonging the lifetime of the PbPc crystal structure during TEM investigation. The knowledge obtained by diffraction experiments is then translated to real space high-resolution TEM imaging of PbPc.

19.
Adv Sci (Weinh) ; 10(26): e2303781, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37409444

RESUMEN

The manipulation of carbon nitride (CN) structures is one main avenue to enhance the activity of CN-based photocatalysts. Increasing the efficiency of photocatalytic heterogeneous materials is a critical step toward the realistic implementation of sustainable schemes for organic synthesis. However, limited knowledge of the structure/activity relationship in relation to subtle structural variations prevents a fully rational design of new photocatalytic materials, limiting practical applications. Here, the CN structure is engineered by means of a microwave treatment, and the structure of the material is shaped around its suitable functionality for Ni dual photocatalysis, with a resulting boosting of the reaction efficiency toward many CX (X = N, S, O) couplings. The combination of advanced characterization techniques and first-principle simulations reveals that this enhanced reactivity is due to the formation of carbon vacancies that evolve into triazole and imine N species able to suitably bind Ni complexes and harness highly efficient dual catalysis. The cost-effective microwave treatment proposed here appears as a versatile and sustainable approach to the design of CN-based photocatalysts for a wide range of industrially relevant organic synthetic reactions.

20.
J Am Chem Soc ; 134(42): 17789-96, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-23030496

RESUMEN

Stereoselective noncovalent synthesis of one-dimensional helical self-assembled stacks of achiral oligo(p-phenylenevinylene) ureidotriazine (AOPV3) monomers is obtained by a chiral supramolecular auxiliary approach. The racemic mixture of helical stacks of achiral AOPV3 molecules is converted into homochiral helical stacks, as shown by both spectroscopic measurements and molecular modeling simulations. The conversion is promoted by an orthogonal two-point ion-pair interaction with the chiral auxiliary dibenzoyl tartaric acid (D- or L-TA) molecules, which biases the angle population distribution and thereby the stack helicity. The induced preferred helicity is maintained by the OPV stacks even after the removal of the chiral auxiliary by extraction with ethylenediamine (EDA), due to the kinetic stability of the OPV stacks at room temperature. Spectroscopic probing of the helical self-assembly and the racemization process of these π-conjugated OPV chromophores shed further light into the mechanistic pathways of this chiral asymmetric noncovalent synthesis and the kinetic stability of the stacks produced. The racemization of the stacks follows first-order kinetics and no switch in mechanism is observed as a result of a temperature change; therefore, a racemization via disassembly assembly is proposed. Remarkably, the preferred helicity of the stacks of achiral AOPV3 can be retained almost completely after a heating-cooling cycle where the stacks first partially depolymerize and then polymerize again with the still existing stacks being the seeds for self-assembly of achiral AOPV3. Only after a fully dissociated state is obtained at high temperatures, the optical activity of the supramolecular stack self-assembled at room temperature is lost.


Asunto(s)
Polivinilos/síntesis química , Triazinas/síntesis química , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Estructura Molecular , Polivinilos/química , Triazinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA