Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 30(8)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914418

RESUMEN

Examining the persistence of highly pathogenic avian influenza A(H5N1) from cattle and human influenza A(H1N1)pdm09 pandemic viruses in unpasteurized milk revealed that both remain infectious on milking equipment materials for several hours. Those findings highlight the risk for H5N1 virus transmission to humans from contaminated surfaces during the milking process.

2.
Appl Environ Microbiol ; 90(2): e0201023, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38193683

RESUMEN

Expulsions of virus-laden aerosols or droplets from the oral and nasal cavities of an infected host are an important source of onward respiratory virus transmission. However, the presence of infectious influenza virus in the oral cavity during infection has not been widely considered, and thus, little work has explored the environmental persistence of influenza virus in oral cavity expulsions. Using the ferret model, we detected infectious virus in the nasal and oral cavities, suggesting that the virus can be expelled into the environment from both anatomical sites. We also assessed the stability of two influenza A viruses (H1N1 and H3N2) in droplets of human saliva or respiratory mucus over a range of relative humidities. We observed that influenza virus infectivity decays rapidly in saliva droplets at intermediate relative humidity, while viruses in airway surface liquid droplets retain infectivity. Virus inactivation was not associated with bulk protein content, salt content, or droplet drying time. Instead, we found that saliva droplets exhibited distinct inactivation kinetics during the wet and dry phases at intermediate relative humidity, and droplet residue morphology may lead to the elevated first-order inactivation rate observed during the dry phase. Additionally, distinct differences in crystalline structure and nanobead localization were observed between saliva and airway surface liquid droplets. Together, our work demonstrates that different respiratory fluids exhibit unique virus persistence profiles and suggests that influenza viruses expelled from the oral cavity may contribute to virus transmission in low- and high-humidity environments.IMPORTANCEDetermining how long viruses persist in the environment is important for mitigating transmission risk. Expelled infectious droplets and aerosols are composed of respiratory fluids, including saliva and complex mucus mixtures, but how well influenza viruses survive in such fluids is largely unknown. Here, we find that infectious influenza virus is present in the oral cavity of infected ferrets, suggesting that saliva-containing expulsions can play a role in onward transmission. Additionally, influenza virus in droplets composed of saliva degrades more rapidly than virus within respiratory mucus. Droplet composition impacts the crystalline structure and virus localization in dried droplets. These results suggest that viruses from distinct sites in the respiratory tract could have variable persistence in the environment, which will impact viral transmission fitness.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Animales , Humanos , Humedad , Subtipo H1N1 del Virus de la Influenza A/fisiología , Saliva , Subtipo H3N2 del Virus de la Influenza A/fisiología , Estaciones del Año , Hurones , Moco , Aerosoles
3.
PLoS Pathog ; 17(2): e1009273, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600489

RESUMEN

Human-to-human transmission of influenza viruses is a serious public health threat, yet the precise role of immunity from previous infections on the susceptibility to airborne infection is still unknown. Using the ferret model, we examined the roles of exposure duration and heterosubtypic immunity on influenza transmission. We demonstrate that a 48 hour exposure is sufficient for efficient transmission of H1N1 and H3N2 viruses. To test pre-existing immunity, a gap of 8-12 weeks between primary and secondary infections was imposed to reduce innate responses and ensure robust infection of donor animals with heterosubtypic viruses. We found that pre-existing H3N2 immunity did not significantly block transmission of the 2009 H1N1pandemic (H1N1pdm09) virus to immune animals. Surprisingly, airborne transmission of seasonal H3N2 influenza strains was abrogated in recipient animals with H1N1pdm09 pre-existing immunity. This protection from natural infection with H3N2 virus was independent of neutralizing antibodies. Pre-existing immunity with influenza B virus did not block H3N2 virus transmission, indicating that the protection was likely driven by the adaptive immune response. We demonstrate that pre-existing immunity can impact susceptibility to heterologous influenza virus strains, and implicate a novel correlate of protection that can limit the spread of respiratory pathogens through the air.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/transmisión , Animales , Hurones , Masculino , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología
4.
Appl Environ Microbiol ; 89(7): e0063323, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37404191

RESUMEN

Respiratory viruses can be transmitted by multiple modes, including contaminated surfaces, commonly referred to as fomites. Efficient fomite transmission requires that a virus remain infectious on a given surface material over a wide range of environmental conditions, including different relative humidities. Prior work examining the stability of influenza viruses on surfaces has relied upon virus grown in media or eggs, which does not mimic the composition of virus-containing droplets expelled from the human respiratory tract. In this study, we examined the stability of the 2009 pandemic H1N1 (H1N1pdm09) virus on a variety of nonporous surface materials at four different humidities. Importantly, we used virus grown in primary human bronchial epithelial cell (HBE) cultures from different donors to recapitulate the physiological microenvironment of expelled viruses. We observed rapid inactivation of H1N1pdm09 on copper under all experimental conditions. In contrast to copper, viruses were stable on polystyrene plastic, stainless steel, aluminum, and glass, at multiple relative humidities, but greater decay on acrylonitrile butadiene styrene (ABS) plastic was observed at short time points. However, the half-lives of viruses at 23% relative humidity were similar among noncopper surfaces and ranged from 4.5 to 5.9 h. Assessment of H1N1pdm09 longevity on nonporous surfaces revealed that virus persistence was governed more by differences among HBE culture donors than by surface material. Our findings highlight the potential role of an individual's respiratory fluid on viral persistence and could help explain heterogeneity in transmission dynamics. IMPORTANCE Seasonal epidemics and sporadic pandemics of influenza cause a large public health burden. Although influenza viruses disseminate through the environment in respiratory secretions expelled from infected individuals, they can also be transmitted by contaminated surfaces where virus-laden expulsions can be deposited. Understanding virus stability on surfaces within the indoor environment is critical to assessing influenza transmission risk. We found that influenza virus stability is affected by the host respiratory secretion in which the virus is expelled, the surface material on which the droplet lands, and the ambient relative humidity of the environment. Influenza viruses can remain infectious on many common surfaces for prolonged periods, with half-lives of 4.5 to 5.9 h. These data imply that influenza viruses are persistent in indoor environments in biologically relevant matrices. Decontamination and engineering controls should be used to mitigate influenza virus transmission.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/epidemiología , Humedad , Cobre , Plásticos , Pulmón
5.
J Med Virol ; 95(7): e28896, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386887

RESUMEN

The genome of influenza A viruses (IAV) consists of eight negative-sense RNA segments that are coated by viral nucleoprotein (NP). Until recently, it was assumed that NP binds viral genomic RNA (vRNA) uniformly along the entire segment. However, genome-wide studies have revised the original model in that NP instead binds preferentially to certain regions of vRNA, while others are depleted for NP binding. Even strains with high sequence similarity exhibit distinct NP-binding profiles. Thus, it remains unknown how NP-binding specificity to vRNA is established. Here we introduced nucleotide changes to vRNA to examine whether primary sequence can affect NP binding. Our findings demonstrate that NP binding is indeed susceptible to sequence alterations, as NP peaks can be lost or appear de novo at mutated sites. Unexpectedly, nucleotide changes not only affect NP binding locally at the site of mutation, but also impact NP binding at distal regions that have not been modified. Taken together, our results suggest that NP binding is not regulated by primary sequence alone, but that a network formed by multiple segments governs the deposition of NP on vRNA.


Asunto(s)
Gripe Humana , ARN Viral , Humanos , ARN Viral/genética , Secuencia de Bases , Nucleoproteínas/genética , Nucleótidos
6.
Proc Natl Acad Sci U S A ; 117(29): 17221-17227, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32631992

RESUMEN

Immunity to influenza viruses can be long-lived, but reinfections with antigenically distinct viral strains and subtypes are common. Reinfections can boost antibody responses against viral strains first encountered in childhood through a process termed "original antigenic sin." It is unknown how initial childhood exposures affect the induction of antibodies against the hemagglutinin (HA) stalk domain of influenza viruses. This is an important consideration since broadly reactive HA stalk antibodies can protect against infection, and universal vaccine platforms are being developed to induce these antibodies. Here we show that experimentally infected ferrets and naturally infected humans establish strong "immunological imprints" against HA stalk antigens first encountered during primary influenza virus infections. We found that HA stalk antibodies are surprisingly boosted upon subsequent infections with antigenically distinct influenza A virus subtypes. Paradoxically, these heterosubtypic-boosted HA stalk antibodies do not bind efficiently to the boosting influenza virus strain. Our results demonstrate that an individual's HA stalk antibody response is dependent on the specific subtype of influenza virus that they first encounter early in life. We propose that humans are susceptible to heterosubtypic influenza virus infections later in life since these viruses boost HA stalk antibodies that do not bind efficiently to the boosting antigen.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Infecciones por Orthomyxoviridae/inmunología , Animales , Hurones , Hemaglutininas , Humanos , Inmunización Secundaria , Inmunoglobulina G/sangre , Proteínas Recombinantes
7.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32321804

RESUMEN

Viral proteins pUL16 and pUL21 are required for efficient nuclear egress of herpes simplex virus 2 capsids. To better understand the role of these proteins in nuclear egress, we established whether nuclear egress complex (NEC) distribution and/or function was altered in the absence of either pUL16 or pUL21. NEC distribution in cells infected with pUL16-deficient viruses was indistinguishable from that observed in cells infected with wild-type viruses. In contrast, NEC distribution was aberrant in cells infected with pUL21-deficient virus and, instead, showed some similarity to the aberrant NEC distribution pattern observed in cells infected with pUs3-deficient virus. These results indicated that pUL16 plays a role in nuclear egress that is distinct from that of pUL21 and pUs3. Higher-resolution examination of nuclear envelope ultrastructure in cells infected with pUL21-deficient viruses by transmission electron microscopy showed different types of nuclear envelope perturbations, including some that were not observed in cells infected with pUs3 deficient virus. The formation of the nuclear envelope perturbations observed in pUL21-deficient virus infections was dependent on a functional NEC, revealing a novel role for pUL21 in regulating NEC activity. The results of comparisons of nuclear envelope ultrastructure in cells infected with viruses lacking pUs3, pUL16, or both pUs3 and pUL16 were consistent with a role for pUL16 in advance of primary capsid envelopment and shed new light on how pUs3 functions in nuclear egress.IMPORTANCE The membrane deformation activity of the herpesvirus nuclear egress complex (NEC) allows capsids to transit through both nuclear membranes into the cytoplasm. NEC activity must be precisely controlled during viral infection, and yet our knowledge of how NEC activity is controlled is incomplete. To determine how pUL16 and pUL21, two viral proteins required for nuclear egress of herpes simplex virus 2, function in nuclear egress, we examined how the lack of each protein impacted NEC distribution. These analyses revealed a function of pUL16 in nuclear egress distinct from that of pUL21, uncovered a novel role for pUL21 in regulating NEC activity, and shed new light on how a viral kinase, pUs3, regulates nuclear egress. Nuclear egress of capsids is required for all herpesviruses. A complete understanding of all aspects of nuclear egress, including how viral NEC activity is controlled, may yield strategies to disrupt this process and aid the development of herpes-specific antiviral therapies.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Animales , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Núcleo Celular/virología , Chlorocebus aethiops , Fibroblastos , Células HeLa , Herpes Simple/virología , Infecciones por Herpesviridae/metabolismo , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 2/fisiología , Humanos , Ratones , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Simplexvirus/metabolismo , Simplexvirus/patogenicidad , Células Vero , Proteínas Virales/fisiología , Proteínas Reguladoras y Accesorias Virales/fisiología , Virión/metabolismo , Ensamble de Virus , Liberación del Virus/fisiología , Replicación Viral
8.
Nucleic Acids Res ; 45(15): 8968-8977, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28911100

RESUMEN

Influenza A virus (IAV) genomes are composed of eight single-stranded RNA segments that are coated by viral nucleoprotein (NP) molecules. Classically, the interaction between NP and viral RNA (vRNA) is depicted as a uniform pattern of 'beads on a string'. Using high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP), we identified the vRNA binding profiles of NP for two H1N1 IAV strains in virions. Contrary to the prevailing model for vRNA packaging, NP does not bind vRNA uniformly in the A/WSN/1933 and A/California/07/2009 strains, but instead each vRNA segment exhibits a unique binding profile, containing sites that are enriched or poor in NP association. Intriguingly, both H1N1 strains have similar yet distinct NP binding profiles despite extensive sequence conservation. Peaks identified by HITS-CLIP were verified as true NP binding sites based on insensitivity to DNA antisense oligonucleotide-mediated RNase H digestion. Moreover, nucleotide content analysis of NP peaks revealed that these sites are relatively G-rich and U-poor compared to the genome-wide nucleotide content, indicating an as-yet unidentified sequence bias for NP association in vivo. Taken together, our genome-wide study of NP-vRNA interaction has implications for the understanding of influenza vRNA architecture and genome packaging.


Asunto(s)
Genoma Viral , Subtipo H1N1 del Virus de la Influenza A/genética , Nucleoproteínas/química , ARN Viral/química , Proteínas Virales/química , Virión/genética , Secuencia de Bases , Sitios de Unión , Secuencia Conservada , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/ultraestructura , Modelos Moleculares , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Oligonucleótidos Antisentido/química , Unión Proteica , ARN Viral/genética , ARN Viral/metabolismo , Ribonucleasa H/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/metabolismo , Virión/ultraestructura , Ensamble de Virus/genética
9.
J Virol ; 88(10): 5661-76, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24600008

RESUMEN

UNLABELLED: The tripartite motif (TRIM) family of proteins includes the TRIM5α antiretroviral restriction factor. TRIM5α from many Old World and some New World monkeys can restrict the human immunodeficiency virus type 1 (HIV-1), while human TRIM5α restricts N-tropic murine leukemia virus (N-MLV). TRIM5α forms highly dynamic cytoplasmic bodies (CBs) that associate with and translocate on microtubules. However, the functional involvement of microtubules or other cytoskeleton-associated factors in the viral restriction process had not been shown. Here, we demonstrate the dependency of TRIM5α-mediated restriction on microtubule-mediated transport. Pharmacological disruption of the microtubule network using nocodazole or disabling it using paclitaxel (originally named taxol) decreased the restriction of N-MLV and HIV-1 by human or simian alleles of TRIM5α, respectively. In addition, pharmacological inhibition of dynein motor complexes using erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and small interfering RNA-mediated depletion of the dynein heavy chain (DHC) similarly decreased TRIM5α-mediated restriction. The loss in restriction resulting from either the disassembly of microtubules or the disruption of dynein motor activity was seen for both endogenous and overexpressed TRIM5α and was not due to differences in protein stability or cell viability. Both nocodazole treatment and DHC depletion interfered with the dynamics of TRIM5α CBs, increasing their size and altering their intracellular localization. In addition, nocodazole, paclitaxel, and DHC depletion were all found to increase the stability of HIV-1 cores in infected cells, providing an alternative explanation for the decreased restriction. In conclusion, association with microtubules and the translocation activity of dynein motor complexes are required to achieve efficient restriction by TRIM5α. IMPORTANCE: The primate innate cellular defenses against infection by retroviruses include a protein named TRIM5α, belonging to the family of restriction factors. TRIM5α is present in the cytoplasm, where it can intercept incoming retroviruses shortly after their entry. How TRIM5α manages to be present at the appropriate subcytoplasmic location to interact with its target is unknown. We hypothesized that TRIM5α, either as a soluble protein or a high-molecular-weight complex (the cytoplasmic body), is transported within the cytoplasm by a molecular motor called the dynein complex, which is known to interact with and move along microtubules. Our results show that destructuring microtubules or crippling their function decreased the capacity of human or simian TRIM5α to restrict their retroviral targets. Inhibiting dynein motor activity, or reducing the expression of a key component of this complex, similarly affected TRIM5α-mediated restriction. Thus, we have identified specific cytoskeleton structures involved in innate antiretroviral defenses.


Asunto(s)
Proteínas Portadoras/metabolismo , Dineínas/metabolismo , VIH-1/inmunología , Virus de la Leucemia Murina/inmunología , Microtúbulos/metabolismo , Animales , Factores de Restricción Antivirales , Transporte Biológico , Línea Celular , Humanos , Macaca mulatta , Proteínas/metabolismo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas
10.
Virol J ; 12: 138, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26362536

RESUMEN

BACKGROUND: The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein is necessary and sufficient to assemble non-infectious particles. Given that HIV-1 subverts many host proteins at all stages of its life cycle, it is essential to identify these interactions as potential targets for antiretroviral therapy. FINDINGS: This work demonstrates the use of proximity-dependent biotin identification (BioID) of host proteins and complexes that are proximal to the N-terminal domains of the HIV-1 Gag polyprotein. Two of the hits identified in the BioID screen were validated by immunoprecipation and confirmed the interaction of DDX17 and RPS6 with HIV-1 Gag. CONCLUSIONS: Our results show that BioID is both a successful and complementary method to screen for nearby interacting proteins of HIV-1 Gag during the replicative cycle in different cell lines.


Asunto(s)
VIH-1/fisiología , Interacciones Huésped-Patógeno , Proteínas/análisis , Proteómica/métodos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Biotinilación , Humanos , Inmunoprecipitación , Unión Proteica
11.
J Virol ; 87(10): 5904-15, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23487471

RESUMEN

Herpes simplex virus 2 (HSV-2) is an important human pathogen that is the major cause of genital herpes infections and a significant contributor to the epidemic spread of human immunodeficiency virus infections. The UL21 gene is conserved throughout the Alphaherpesvirinae subfamily and encodes a tegument protein that is dispensable for HSV-1 and pseudorabies virus replication in cultured cells; however, its precise functions have not been determined. To investigate the role of UL21 in the HSV-2 replicative cycle, we constructed a UL21 deletion virus (HSV-2 ΔUL21) using an HSV-2 bacterial artificial chromosome, pYEbac373. HSV-2 ΔUL21 was unable to direct the production of infectious virus in noncomplementing cells, whereas the repaired HSV-2 ΔUL21 strain grew to wild-type (WT) titers, indicating that UL21 is essential for virus propagation. Cells infected with HSV-2 ΔUL21 demonstrated a 2-h delay in the kinetics of immediate early viral gene expression. However, this delay in gene expression was not responsible for the inability of cells infected with HSV-2 ΔUL21 to produce virus insofar as late viral gene products accumulated to WT levels by 24 h postinfection (hpi). Electron and fluorescence microscopy studies indicated that DNA-containing capsids formed in the nuclei of ΔUL21-infected cells, while significantly reduced numbers of capsids were located in the cytoplasm late in infection. Taken together, these data indicate that HSV-2 UL21 has an early function that facilitates viral gene expression as well as a late essential function that promotes the egress of capsids from the nucleus.


Asunto(s)
Genes Esenciales , Herpesvirus Humano 2/fisiología , Proteínas Virales/metabolismo , Replicación Viral , Animales , Cápside/química , Cápside/ultraestructura , Línea Celular , Núcleo Celular/virología , Cromosomas Artificiales Bacterianos , Citoplasma/virología , Eliminación de Gen , Prueba de Complementación Genética , Herpesvirus Humano 2/genética , Viabilidad Microbiana , Microscopía Electrónica , Microscopía Fluorescente , Proteínas Virales/genética
12.
J Virol ; 87(17): 9590-603, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23785212

RESUMEN

The Us2 gene encodes a tegument protein that is conserved in most members of the Alphaherpesvirinae. Previous studies on the pseudorabies virus (PRV) Us2 ortholog indicated that it is prenylated, associates with membranes, and spatially regulates the enzymatic activity of the MAP (mitogen-activated protein) kinase ERK (extracellular signal-related kinase) through direct binding and sequestration of ERK at the cytoplasmic face of the plasma membrane. Here we present an analysis of the herpes simplex virus 2 (HSV-2) Us2 ortholog and demonstrate that, like PRV Us2, HSV-2 Us2 is a virion component and that, unlike PRV Us2, it does not interact with ERK in yeast two-hybrid assays. HSV-2 Us2 lacks prenylation signals and other canonical membrane-targeting motifs yet is tightly associated with detergent-insoluble membranes and localizes predominantly to recycling endosomes. Experiments to identify cellular proteins that facilitate HSV-2 Us2 membrane association were inconclusive; however, these studies led to the identification of HSV-2 Us2 as a ubiquitin-interacting protein, providing new insight into the functions of HSV-2 Us2.


Asunto(s)
Herpesvirus Humano 2/genética , Herpesvirus Humano 2/fisiología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/fisiología , Animales , Chlorocebus aethiops , Endosomas/virología , Genes Virales , Células HEK293 , Herpesvirus Humano 2/patogenicidad , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Sistema de Señalización de MAP Quinasas , Prenilación , Técnicas del Sistema de Dos Híbridos , Ubiquitina/metabolismo , Células Vero
13.
medRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826283

RESUMEN

Spillover of highly pathogenic avian H5N1 into the cattle population poses a risk to humans through the close contact with farm workers. High viral loads of influenza viruses in the unpasteurized milk of infected lactating cows has the potential to contaminate equipment within milking parlors and create fomites for transmission to dairy workers. Cattle H5N1 and human 2009 H1N1 pandemic influenza viruses were found to remain infectious on surfaces commonly found in milking equipment materials for a few hours. The data presented here provide a compelling case for the risk of contaminated surfaces generated during milking to facilitate transmission of H5N1 from cattle-to-cattle and to dairy farm workers.

14.
Nat Commun ; 15(1): 5025, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871701

RESUMEN

Influenza A viruses in swine have considerable genetic diversity and continue to pose a pandemic threat to humans due to a potential lack of population level immunity. Here we describe a pipeline to characterize and triage influenza viruses for their pandemic risk and examine the pandemic potential of two widespread swine origin viruses. Our analysis reveals that a panel of human sera collected from healthy adults in 2020 has no cross-reactive neutralizing antibodies against a α-H1 clade strain (α-swH1N2) but do against a γ-H1 clade strain. The α-swH1N2 virus replicates efficiently in human airway cultures and exhibits phenotypic signatures similar to the human H1N1 pandemic strain from 2009 (H1N1pdm09). Furthermore, α-swH1N2 is capable of efficient airborne transmission to both naïve ferrets and ferrets with prior seasonal influenza immunity. Ferrets with H1N1pdm09 pre-existing immunity show reduced α-swH1N2 viral shedding and less severe disease signs. Despite this, H1N1pdm09-immune ferrets that became infected via the air can still onward transmit α-swH1N2 with an efficiency of 50%. These results indicate that this α-swH1N2 strain has a higher pandemic potential, but a moderate level of impact since there is reduced replication fitness and pathology in animals with prior immunity.


Asunto(s)
Hurones , Subtipo H1N1 del Virus de la Influenza A , Subtipo H1N2 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Pandemias , Animales , Hurones/virología , Humanos , Porcinos , Gripe Humana/virología , Gripe Humana/epidemiología , Gripe Humana/inmunología , Gripe Humana/sangre , Gripe Humana/transmisión , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/sangre , Femenino , Esparcimiento de Virus , Masculino , Adulto , Replicación Viral
15.
Annu Rev Virol ; 10(1): 347-370, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37308086

RESUMEN

Respiratory viruses, such as influenza viruses, cause significant morbidity and mortality worldwide through seasonal epidemics and sporadic pandemics. Influenza viruses transmit through multiple modes including contact (either direct or through a contaminated surface) and inhalation of expelled aerosols. Successful human to human transmission requires an infected donor who expels virus into the environment, a susceptible recipient, and persistence of the expelled virus within the environment. The relative efficiency of each mode can be altered by viral features, environmental parameters, donor and recipient host characteristics, and viral persistence. Interventions to mitigate transmission of influenza viruses can target any of these factors. In this review, we discuss many aspects of influenza virus transmission, including the systems to study it, as well as the impact of natural barriers and various nonpharmaceutical and pharmaceutical interventions.


Asunto(s)
Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Humanos , Aerosoles y Gotitas Respiratorias , Pandemias
16.
mSphere ; 8(4): e0003923, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37255295

RESUMEN

Secondary infection with Streptococcus pneumoniae has contributed significantly to morbidity and mortality during multiple influenza virus pandemics and remains a common threat today. During a concurrent infection, both pathogens can influence the transmission of each other, but the mechanisms behind this are unclear. In this study, condensation air sampling and cyclone bioaerosol sampling were performed using ferrets first infected with the 2009 H1N1 pandemic influenza virus (H1N1pdm09) and secondarily infected with S. pneumoniae strain D39 (Spn). We detected viable pathogens and microbial nucleic acid in expelled aerosols from co-infected ferrets, suggesting that these microbes could be present in the same respiratory expulsions. To assess whether microbial communities impact pathogen stability within an expelled droplet, we performed experiments measuring viral and bacterial persistence in 1 µL droplets. We observed that H1N1pdm09 stability was unchanged in the presence of Spn. Further, Spn stability was moderately increased in the presence of H1N1pdm09, although the degree of stabilization differed between airway surface liquid collected from individual patient cultures. These findings are the first to collect both pathogens from the air and in doing so, they provide insight into the interplay between these pathogens and their hosts.IMPORTANCEThe impact of microbial communities on transmission fitness and environmental persistence is under-studied. Environmental stability of microbes is crucial to identifying transmission risks and mitigation strategies, such as removal of contaminated aerosols and decontamination of surfaces. Co-infection with S. pneumoniae is very common during influenza virus infection, but little work has been done to understand whether S. pneumoniae alters stability of influenza virus, or vice versa, in a relevant system. Here, we demonstrate that influenza virus and S. pneumoniae are expelled by co-infected hosts. Our stability assays did not reveal any impact of S. pneumoniae on influenza virus stability, but did show a trend towards increased stability of S. pneumoniae in the presence of influenza viruses. Future work characterizing environmental persistence of viruses and bacteria should include microbially complex solutions to better mimic physiologically relevant conditions.


Asunto(s)
Coinfección , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Animales , Humanos , Streptococcus pneumoniae/fisiología , Hurones , Subtipo H1N1 del Virus de la Influenza A/fisiología , Aerosoles y Gotitas Respiratorias
17.
FEMS Microbes ; 3: xtac007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392116

RESUMEN

Secondary bacterial infection is a common complication in severe influenza virus infections. During the H1N1 pandemic of 2009, increased mortality was observed among healthy young adults due to secondary bacterial pneumonia, one of the most frequent bacterial species being Streptococcus pneumoniae (Spn). Previous studies in mice and ferrets have suggested a synergistic relationship between Spn and influenza viruses. In this study, the ferret model was used to examine whether secondary Spn infection (strains BHN97 and D39) influence replication and airborne transmission of the 2009 pandemic H1N1 virus (H1N1pdm09). Secondary infection with Spn after H1N1pdm09 infection consistently resulted in a significant decrease in viral titers in the ferret nasal washes. While secondary Spn infection appeared to negatively impact influenza virus replication, animals precolonized with Spn were equally susceptible to H1N1pdm09 airborne transmission. In line with previous work, ferrets with preceding H1N1pdm09 and secondary Spn infection had increased bacterial loads and more severe clinical symptoms as compared to animals infected with H1N1pdm09 or Spn alone. Interestingly, the donor animals that displayed the most severe clinical symptoms had reduced airborne transmission of H1N1pdm09. Based on these data, we propose an asymmetrical relationship between these two pathogens, rather than a synergistic one, since secondary bacterial infection enhances Spn colonization and pathogenesis but decreases viral titers.

18.
Science ; 378(6622): 899-904, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36423275

RESUMEN

Seasonal influenza vaccines offer little protection against pandemic influenza virus strains. It is difficult to create effective prepandemic vaccines because it is uncertain which influenza virus subtype will cause the next pandemic. In this work, we developed a nucleoside-modified messenger RNA (mRNA)-lipid nanoparticle vaccine encoding hemagglutinin antigens from all 20 known influenza A virus subtypes and influenza B virus lineages. This multivalent vaccine elicited high levels of cross-reactive and subtype-specific antibodies in mice and ferrets that reacted to all 20 encoded antigens. Vaccination protected mice and ferrets challenged with matched and mismatched viral strains, and this protection was at least partially dependent on antibodies. Our studies indicate that mRNA vaccines can provide protection against antigenically variable viruses by simultaneously inducing antibodies against multiple antigens.


Asunto(s)
Virus de la Influenza A , Virus de la Influenza B , Infecciones por Orthomyxoviridae , Vacunas Combinadas , Vacunas Sintéticas , Vacunas de ARNm , Animales , Ratones , Hurones , Nucleósidos/química , Nucleósidos/genética , Infecciones por Orthomyxoviridae/prevención & control , Vacunas Combinadas/genética , Vacunas Combinadas/inmunología , Vacunas de ARNm/genética , Vacunas de ARNm/inmunología , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Reacciones Cruzadas
19.
J Bacteriol ; 193(9): 2168-76, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21378194

RESUMEN

The PmrAB two-component system of enterobacteria regulates a number of genes whose protein products modify lipopolysaccharide (LPS). The LPS is modified during transport to the bacterial outer membrane (OM). A subset of PmrAB-mediated LPS modifications consists of the addition of phosphoethanolamine (pEtN) to lipid A by PmrC and to the core by CptA. In Salmonella enterica, pEtN modifications have been associated with resistance to polymyxin B and to excess iron. To investigate putative functions of pEtN modifications in Citrobacter rodentium, ΔpmrAB, ΔpmrC, ΔcptA, and ΔpmrC ΔcptA deletion mutants were constructed. Compared to the wild type, most mutant strains were found to be more susceptible to antibiotics that must diffuse across the LPS layer of the OM. All mutant strains also showed increased influx rates of ethidium dye across their OM, suggesting that PmrAB-regulated pEtN modifications affect OM permeability. This was confirmed by increased partitioning of the fluorescent dye 1-N-phenylnaphthylamine (NPN) into the OM phospholipid layer of the mutant strains. In addition, substantial release of periplasmic ß-lactamase was observed for the ΔpmrAB and ΔpmrC ΔcptA strains, indicating a loss of OM integrity. This study attributes a new role for PmrAB-mediated pEtN LPS modifications in the maintenance of C. rodentium OM integrity.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Citrobacter rodentium/citología , Citrobacter rodentium/metabolismo , Etanolaminas/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Membrana Celular/fisiología , Citrobacter rodentium/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Lipopolisacáridos/química , Mutación , Permeabilidad , Transcripción Genética , beta-Lactamasas/metabolismo
20.
Nat Rev Microbiol ; 19(4): 272-282, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33024309

RESUMEN

Traditionally, the viral replication cycle is envisioned as a single, well-defined loop with four major steps: attachment and entry into a target cell, replication of the viral genome, maturation of viral proteins and genome packaging into infectious progeny, and egress and dissemination to the next target cell. However, for many viruses, a growing body of evidence points towards extreme heterogeneity in each of these steps. In this Review, we reassess the major steps of the viral replication cycle by highlighting recent advances that show considerable variability during viral infection. First, we discuss heterogeneity in entry receptors, followed by a discussion on error-prone and low-fidelity polymerases and their impact on viral diversity. Next, we cover the implications of heterogeneity in genome packaging and assembly on virion morphology. Last, we explore alternative egress mechanisms, including tunnelling nanotubes and host microvesicles. In summary, we discuss the implications of viral phenotypic, morphological and genetic heterogeneity on pathogenesis and medicine. This Review highlights common themes and unique features that give nuance to the viral replication cycle.


Asunto(s)
Empaquetamiento del Genoma Viral/fisiología , Virus/crecimiento & desarrollo , Virus/metabolismo , Animales , Interacciones Huésped-Patógeno/fisiología , Humanos , Receptores Virales/metabolismo , Ensamble de Virus/fisiología , Internalización del Virus , Replicación Viral/fisiología , Virus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA