Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurooncol ; 168(2): 215-224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38755519

RESUMEN

PURPOSE: Clinical sequencing of tumor DNA is necessary to render an integrated diagnosis and select therapy for children with primary central nervous system (CNS) tumors, but neurosurgical biopsy is not without risk. In this study, we describe cell-free DNA (cfDNA) in blood and cerebrospinal fluid (CSF) as sources for "liquid biopsy" in pediatric brain tumors. METHODS: CSF samples were collected by lumbar puncture, ventriculostomy, or surgery from pediatric patients with CNS tumors. Following extraction, CSF-derived cfDNA was sequenced using UW-OncoPlex™, a clinically validated next-generation sequencing platform. CSF-derived cfDNA results and paired plasma and tumor samples concordance was also evaluated. RESULTS: Seventeen CSF samples were obtained from 15 pediatric patients with primary CNS tumors. Tumor types included medulloblastoma (n = 7), atypical teratoid/rhabdoid tumor (n = 2), diffuse midline glioma with H3 K27 alteration (n = 4), pilocytic astrocytoma (n = 1), and pleomorphic xanthoastrocytoma (n = 1). CSF-derived cfDNA was detected in 9/17 (53%) of samples, and sufficient for sequencing in 8/10 (80%) of extracted samples. All somatic mutations and copy-number variants were also detected in matched tumor tissue, and tumor-derived cfDNA was absent in plasma samples and controls. Tumor-derived cfDNA alterations were detected in the absence of cytological evidence of malignant cells in as little as 200 µl of CSF. Several clinically relevant alterations, including a KIAA1549::BRAF fusion were detected. CONCLUSIONS: Clinically relevant genomic alterations are detectable using CSF-derived cfDNA across a range of pediatric brain tumors. Next-generation sequencing platforms are capable of producing a high yield of DNA alterations with 100% concordance rate with tissue analysis.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , ADN Tumoral Circulante , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Niño , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/líquido cefalorraquídeo , Neoplasias Encefálicas/diagnóstico , Masculino , Femenino , Preescolar , Adolescente , Lactante , ADN Tumoral Circulante/líquido cefalorraquídeo , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre , Biopsia Líquida/métodos , Mutación
2.
Pediatr Blood Cancer ; 70 Suppl 6: e30600, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37534382

RESUMEN

Tumors of the central nervous system (CNS) are a leading cause of morbidity and mortality in the pediatric population. Molecular characterization in the last decade has redefined CNS tumor diagnoses and risk stratification; confirmed the unique biology of pediatric tumors as distinct entities from tumors that occur in adulthood; and led to the first novel targeted therapies receiving Food and Drug Administration (FDA) approval for children with CNS tumors. There remain significant challenges to overcome: children with unresectable low-grade glioma may require multiple prolonged courses of therapy affecting quality of life; children with high-grade glioma have a dismal long-term prognosis; children with medulloblastoma may suffer significant short- and long-term morbidity from multimodal cytotoxic therapy, and approaches to improve survival in ependymoma remain elusive. The Children's Oncology Group (COG) is uniquely positioned to conduct the next generation of practice-changing clinical trials through rapid prospective molecular characterization and therapy evaluation in well-defined clinical and molecular groups.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Neoplasias Cerebelosas , Glioma , Meduloblastoma , Niño , Humanos , Calidad de Vida , Neoplasias del Sistema Nervioso Central/terapia , Glioma/patología , Meduloblastoma/patología , Neoplasias Encefálicas/patología
3.
Pediatr Blood Cancer ; 69(4): e29596, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35129878

RESUMEN

Pineal anlage tumor is a rare pediatric tumor with clinical and histological features overlapping with pineoblastoma. Two patients with pineal anlage tumor, a 13-month-old female and an 11-month-old male, underwent subtotal resection, high-dose chemotherapy with autologous stem cell rescue, and radiation. Neither had tumor progression 50 months after diagnosis. The tumors underwent next-generation sequencing on a panel of 340 genes. Chromosomal copy gains and losses were present and differed between the tumors. No mutations or amplifications, including none specific to pineoblastoma, were identified.


Asunto(s)
Neoplasias Encefálicas , Glándula Pineal , Pinealoma , Neoplasias Supratentoriales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Niño , Aberraciones Cromosómicas , Femenino , Humanos , Lactante , Masculino , Mutación , Glándula Pineal/patología , Pinealoma/genética , Pinealoma/patología , Pinealoma/terapia , Neoplasias Supratentoriales/patología
4.
J Neurooncol ; 155(2): 155-163, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34613581

RESUMEN

PURPOSE: Desmoplastic infantile astrocytoma (DIA) and desmoplastic infantile ganglioglioma (DIG) are classified together as grade I neuronal and mixed neuronal-glial tumor of the central nervous system by the World Health Organization (WHO). These tumors are rare and have not been well characterized in terms of clinical outcomes. We aimed to identify clinical predictors of mortality and tumor recurrence/progression by performing an individual patient data meta-analysis (IPDMA) of the literature. METHODS: A systematic literature review from 1970 to 2020 was performed, and individualized clinical data for patients diagnosed with DIA/DIG were extracted. Aggregated data were excluded from collection. Outcome measures of interest were mortality and tumor recurrence/progression, as well as time-to-event (TTE) for each of these. Participants without information on these outcome measures were excluded. Cox regression survival analyses were performed to determine predictors of mortality and tumor recurrence / progression. RESULTS: We identified 98 articles and extracted individual patient data from 188 patients. The cohort consisted of 58.9% males with a median age of 7 months. The majority (68.1%) were DIGs, while 24.5% were DIAs and 7.5% were non-specific desmoplastic infantile tumors; DIAs presented more commonly in deep locations (p = 0.001), with leptomeningeal metastasis (p = 0.001), and was associated with decreased probability of gross total resection (GTR; p = 0.001). Gender, age, and tumor pathology were not statistically significant predictors of either mortality or tumor recurrence/progression. On multivariate survival analysis, GTR was a predictor of survival (HR = 0.058; p = 0.007) while leptomeningeal metastasis at presentation was a predictor of mortality (HR = 3.27; p = 0.025). Deep tumor location (HR = 2.93; p = 0.001) and chemotherapy administration (HR = 2.02; p = 0.017) were associated with tumor recurrence/progression. CONCLUSION: Our IPDMA of DIA/DIG cases reported in the literature revealed that GTR was a predictor of survival while leptomeningeal metastasis at presentation was associated with mortality. Deep tumor location and chemotherapy were associated with tumor recurrence / progression.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Ganglioglioma , Recurrencia Local de Neoplasia , Astrocitoma/mortalidad , Astrocitoma/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Femenino , Ganglioglioma/mortalidad , Ganglioglioma/patología , Humanos , Lactante , Masculino , Carcinomatosis Meníngea/mortalidad , Recurrencia Local de Neoplasia/epidemiología
5.
Pediatr Dermatol ; 38(1): 18-30, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33378085

RESUMEN

Cancer remains a leading cause of morbidity and mortality among children. Targeted therapies may improve survivorship; however, unique side-effect profiles have also emerged with these novel therapies. Changes in hair, skin, and nails-termed dermatologic adverse events (AEs)-are among the most common sequelae and may result in interruption or discontinuation of therapy. Though dermatologic AEs have been detailed in adults, these findings are not well described in the pediatric population. We reviewed the literature to characterize dermatologic AEs to anticancer targeted therapies available as of July 2020 and summarized the spectrum of clinical findings as well as treatment recommendations for children. Dermatologic AEs are among the most common AEs reported in pediatric patients receiving targeted therapy, but morphologic and histologic descriptions are often lacking in current publications. Pediatric dermatologists are uniquely poised to recognize specific morphology of dermatologic AEs and make recommendations for prevention and treatment that may improve quality of life and enable ongoing cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/efectos adversos , Niño , Humanos , Terapia Molecular Dirigida/efectos adversos , Neoplasias/tratamiento farmacológico , Calidad de Vida , Piel
6.
J Neurooncol ; 148(3): 607-617, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32556862

RESUMEN

INTRODUCTION: Beyond focal radiation, there is no consensus standard therapy for pediatric high-grade glioma (pHGG) and outcomes remain dismal. We describe the largest molecularly-characterized cohort of children with pHGG treated with a 3-drug maintenance regimen of temozolomide, irinotecan, and bevacizumab (TIB) following radiation. METHODS: We retrospectively reviewed 36 pediatric patients treated with TIB at Seattle Children's Hospital from 2009 to 2018 and analyzed survival using the Kaplan-Meier method. Molecular profiling was performed by targeted DNA sequencing and toxicities, steroid use, and palliative care utilization were evaluated. RESULTS: Median age at diagnosis was 10.9 years (18 months-18 years). Genetic alterations were detected in 26 genes and aligned with recognized molecular subgroups including H3 K27M-mutant (12), H3F3A G34-mutant (2), IDH-mutant (4), and hypermutator profiles (4). Fifteen patients (42%) completed 12 planned cycles of maintenance. Side effects associated with chemotherapy delays or modifications included thrombocytopenia (28%) and nausea/vomiting (19%), with temozolomide dosing most frequently modified. Median event-free survival (EFS) and overall survival (OS) was 16.2 and 20.1 months, with shorter survival seen in DIPG (9.3 and 13.3 months, respectively). Survival at 1, 2, and 5 years was 80%, 10% and 0% for DIPG and 85%, 38%, and 16% for other pHGG. CONCLUSION: Our single-center experience demonstrates tolerability of this 3-drug regimen, with prolonged survival in DIPG compared to historical single-agent temozolomide. pHGG survival was comparable to analogous 3-drug regimens and superior to historical agents; however, cure was rare. Children with pHGG remain excellent candidates for the study of novel therapeutics combined with standard therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma/tratamiento farmacológico , Adolescente , Bevacizumab/administración & dosificación , Neoplasias del Tronco Encefálico/patología , Niño , Preescolar , Glioma Pontino Intrínseco Difuso/patología , Femenino , Estudios de Seguimiento , Glioma/patología , Humanos , Lactante , Irinotecán/administración & dosificación , Masculino , Clasificación del Tumor , Estudios Retrospectivos , Tasa de Supervivencia , Temozolomida/administración & dosificación
7.
Pediatr Blood Cancer ; 65(9): e27217, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29750396

RESUMEN

BACKGROUND: This phase 1/2 study (NCT01751308) evaluated cabazitaxel in pediatric patients. Phase 1 determined the maximum tolerated dose (MTD) in patients with recurrent/refractory solid tumors, including central nervous system (CNS) tumors. Phase 2 evaluated activity in pediatric recurrent high-grade glioma (HGG) or diffuse intrinsic pontine glioma (DIPG). PROCEDURE: In phase 1, a 3 + 3 dose-escalation study design was followed. Cabazitaxel was administered at a starting dose of 20 mg/m2 . Dose-limiting toxicities (DLTs) during cycle 1 were assessed to determine the MTD. Tumor response and cabazitaxel pharmacokinetics were also assessed. In phase 2, patients received cabazitaxel at the MTD determined in phase 1. Tumor responses were assessed every 9 weeks (modified Response Assessment in Neuro-oncology criteria). Progression-free survival and cabazitaxel pharmacokinetics were evaluated, and overall survival was estimated. RESULTS: In phase 1, 23 patients were treated, including 19 with CNS tumors. One patient had a partial response; five had stable disease for >3 cycles. Common adverse events included fatigue, diarrhea, nausea and vomiting, febrile neutropenia, and hypersensitivity reactions. Two of three DLTs (febrile neutropenia) occurred with a dose of 35 mg/m2 ; the MTD was 30 mg/m2 . Slightly higher cabazitaxel clearance was observed compared with adult trials. In phase 2, 16 patients (eight HGG and eight DIPG) were enrolled; 11 were evaluable for response and five withdrew (three due to anaphylaxis). All 11 patients progressed within four cycles. No responses were observed; the study was stopped due to futility. CONCLUSIONS: The safety profile of cabazitaxel was consistent with previous studies. The MTD (30 mg/m2 ) was higher than the adult MTD. Cabazitaxel did not demonstrate activity in recurrent/refractory HGG or DIPG.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Taxoides/uso terapéutico , Adolescente , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/efectos adversos , Antineoplásicos Fitogénicos/farmacocinética , Neoplasias Encefálicas/tratamiento farmacológico , Niño , Preescolar , Hipersensibilidad a las Drogas/etiología , Femenino , Enfermedades Gastrointestinales/inducido químicamente , Glioma/tratamiento farmacológico , Enfermedades Hematológicas/inducido químicamente , Humanos , Estimación de Kaplan-Meier , Masculino , Dosis Máxima Tolerada , Tasa de Depuración Metabólica , Recurrencia Local de Neoplasia/tratamiento farmacológico , Supervivencia sin Progresión , Taxoides/administración & dosificación , Taxoides/efectos adversos , Taxoides/farmacocinética , Insuficiencia del Tratamiento
8.
Am J Med Genet A ; 173(1): 245-249, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27734605

RESUMEN

Atypical teratoid rhabdoid tumors of the central nervous system are rare, highly malignant, embryonal tumors most often occurring in children under age 3 years. Most are due to a somatic change in tumor suppressor gene SMARCB1 followed by a second-hit, typically loss of heterozygosity, best detected on immunohistochemical staining. Despite the noteworthy genetic homogeneity of atypical teratoid rhabdoid tumors, relatively little is known about the oncogenic mechanisms that lead to biallelic inactivation of SMARCB1. Herein, we describe a patient with constitutional ring chromosome 22, Phelan-McDermid syndrome and atypical teratoid rhabdoid tumor of the brain. During mitosis, sister chromatids of a ring chromosome may form interlocking and dicentric rings, resulting in chromosomal loss, complex karyotypes, and ongoing somatic variation. We hypothesized that the inherent instability of the patient's ring chromosome could lead to mosaic monosomy chromosome 22, resulting in allelic inactivation of the tumor-suppressor gene SMARCB1 and AT/RT if a second-hit occurred. Utilizing high-density microarray technology to analyze peripheral blood and tumor tissue, we confirmed this oncogenic mechanism, previously undescribed in patients with atypical teratoid rhabdoid tumors. Our data demonstrate chromosomal loss as a consequence of ring chromosome instability serving as the first hit in oncogenesis. This rare but possibly under-recognized mechanism is important to note in children with ATRT and syndromic features. Further investigation is warranted to assess if this oncogenic mechanism has management and/or prognostic implications. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Transformación Celular Neoplásica/genética , Tumor Rabdoide/diagnóstico , Tumor Rabdoide/genética , Teratoma/diagnóstico , Teratoma/genética , Deleción Cromosómica , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Cromosomas Humanos Par 22/genética , Terapia Combinada , Hibridación Genómica Comparativa , Femenino , Expresión Génica , Estudios de Asociación Genética , Humanos , Inmunohistoquímica , Lactante , Imagen por Resonancia Magnética , Fenotipo , Tumor Rabdoide/terapia , Cromosomas en Anillo , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Teratoma/terapia , Resultado del Tratamiento
9.
Nature ; 466(7306): 632-6, 2010 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-20639864

RESUMEN

Understanding the biology that underlies histologically similar but molecularly distinct subgroups of cancer has proven difficult because their defining genetic alterations are often numerous, and the cellular origins of most cancers remain unknown. We sought to decipher this heterogeneity by integrating matched genetic alterations and candidate cells of origin to generate accurate disease models. First, we identified subgroups of human ependymoma, a form of neural tumour that arises throughout the central nervous system (CNS). Subgroup-specific alterations included amplifications and homozygous deletions of genes not yet implicated in ependymoma. To select cellular compartments most likely to give rise to subgroups of ependymoma, we matched the transcriptomes of human tumours to those of mouse neural stem cells (NSCs), isolated from different regions of the CNS at different developmental stages, with an intact or deleted Ink4a/Arf locus (that encodes Cdkn2a and b). The transcriptome of human supratentorial ependymomas with amplified EPHB2 and deleted INK4A/ARF matched only that of embryonic cerebral Ink4a/Arf(-/-) NSCs. Notably, activation of Ephb2 signalling in these, but not other, NSCs generated the first mouse model of ependymoma, which is highly penetrant and accurately models the histology and transcriptome of one subgroup of human supratentorial tumour. Further, comparative analysis of matched mouse and human tumours revealed selective deregulation in the expression and copy number of genes that control synaptogenesis, pinpointing disruption of this pathway as a critical event in the production of this ependymoma subgroup. Our data demonstrate the power of cross-species genomics to meticulously match subgroup-specific driver mutations with cellular compartments to model and interrogate cancer subgroups.


Asunto(s)
Compartimento Celular , Modelos Animales de Enfermedad , Ependimoma/genética , Ependimoma/patología , Genómica , Mutación/genética , Animales , Sistema Nervioso Central/citología , Sistema Nervioso Central/crecimiento & desarrollo , Neoplasias del Sistema Nervioso Central/clasificación , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Ependimoma/clasificación , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes p16 , Humanos , Ratones , Modelos Biológicos , Polimorfismo de Nucleótido Simple/genética , Receptor EphB2/genética , Receptor EphB2/metabolismo , Especificidad de la Especie , Células Madre/citología , Células Madre/metabolismo , Sinapsis/metabolismo
10.
J Pediatr Hematol Oncol ; 38(4): 269-73, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26907655

RESUMEN

Survival after recurrence of medulloblastoma has not been reported in an unselected cohort of patients in the contemporary era. We reviewed 55 patients diagnosed with medulloblastoma between 2000 and 2010, and treated at Seattle Children's Hospital to evaluate patterns of relapse treatment and survival. Fourteen of 47 patients (30%) over the age of 3 experienced recurrent or progressive medulloblastoma after standard therapy. The median time from diagnosis to recurrence was 18.0 months (range, 3.6 to 62.6 mo), and site of recurrence was metastatic in 86%. The median survival after relapse was 10.3 months (range, 1.3 to 80.5 mo); 3-year survival after relapse was 18%. There were trend associations between longer survival and having received additional chemotherapy (median survival 12.8 vs. 1.3 mo, P=0.16) and radiation therapy (15.4 vs. 5.9 mo, P=0.20). Isolated local relapse was significantly associated with shorter survival (1.3 vs. 12.8 mo, P=0.009). Recurrence of medulloblastoma is more likely to be metastatic than reported in previous eras. Within the limits of our small sample, our data suggest a potential survival benefit from retreatment with cytotoxic chemotherapy and radiation even in heavily pretreated patients. This report serves as a baseline against which to evaluate novel therapy combinations.


Asunto(s)
Meduloblastoma/mortalidad , Adolescente , Niño , Femenino , Humanos , Masculino , Meduloblastoma/patología , Meduloblastoma/secundario , Meduloblastoma/terapia , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/radioterapia , Recurrencia , Retratamiento/métodos , Estudios Retrospectivos , Tasa de Supervivencia
11.
Pediatr Blood Cancer ; 62(1): 45-51, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25257751

RESUMEN

BACKGROUND: Pre-clinical studies suggest that anti-angiogenic agents may be toxic to the developing growth plate. The purpose of this study was to evaluate the incidence of growth plate abnormalities in children with refractory cancer undergoing anti-angiogenic therapy. PROCEDURE: Targeted radiographic studies from 53 subjects enrolled on six separate Children's Oncology Group Phase 1 and Pilot Consortium clinical trials evaluating new anti-cancer agents interfering with angiogenesis were reviewed. Subjects received tyrosine kinase inhibitors with anti-angiogenic effects (n = 35), monoclonal antibodies targeting vascular endothelial growth factor (VEGF) (n = 13), or angiopoietin (n = 5). Radiographs of their distal femur/proximal tibia were obtained at baseline. Follow-up radiographs were obtained after odd-numbered treatment cycles in patients with open growth plates who did not experience disease progression prior to cycle 3. RESULTS: Baseline and follow-up growth plate radiographs were acquired in 48/53 (90%) of patients. Five patients (9.4%), all of whom received a specific VEGF/VEGFR blocking agent (sunitinib [n = 1] or pazopanib [n = 4]), had growth plate abnormalities. Four patients had growth plate widening that was apparent on at least two successive radiographs, but was not confirmed by MRI. The fifth patient had progressive growth plate widening and evidence of physeal cartilage hypertrophy on MRI. Subsequent off treatment radiographs showed that the growth plate changes were reversible. CONCLUSION: Growth plate abnormalities occur in a small, but relevant number of patients undergoing anti-angiogenic therapy. These results support the need for growth plate monitoring in children with open growth plates who are receiving anti-angiogenic therapy, and for improved methods to assess toxicity of anti-angiogenic agents to the developing skeleton.


Asunto(s)
Inhibidores de la Angiogénesis/efectos adversos , Resistencia a Antineoplásicos/efectos de los fármacos , Placa de Crecimiento/efectos de los fármacos , Placa de Crecimiento/patología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Neoplasias/patología , Pronóstico
12.
Front Oncol ; 14: 1338022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38511139

RESUMEN

Purpose: Somatic molecular profiling of pediatric brain tumors aids with the diagnosis and treatment of patients with a variety of high- and low-grade central nervous system neoplasms. Here, we report follow-up targeted germline evaluation for patients with possible germline variants following tumor only testing in the initial year in which somatic molecular testing was implemented at a single institution. Patients and Methods: Somatic testing was completed for all tumors of the central nervous system (CNS) undergoing diagnostic workup at Seattle Children's Hospital during the study period of November 2015 to November 2016. Sequencing was performed in a College of American Pathologists-accredited, Clinical Laboratory Improvements Amendments-certified laboratory using UW-OncoPlex™ assay (version 5), a DNA-based targeted next generation sequencing panel validated to detect genetic alterations in 262 cancer-related genes. We tracked subsequent clinical evaluation and testing on a subgroup of this cohort found to have potential germline variants of interest. Results: Molecular sequencing of 88 patients' tumors identified 31 patients with variants that warranted consideration of germline testing. To date, 19 (61%) patients have been tested. Testing confirmed germline variants for ten patients (31% of those identified for testing), one with two germline variants (NF1 and mosaic TP53). Eight (26%) patients died before germline testing was sent. One patient (13%) has not yet had testing. Conclusion: Clinically validated molecular profiling of pediatric brain tumors identifies patients who warrant further germline evaluation. Despite this, only a subset of these patients underwent the indicated confirmatory sequencing. Further work is needed to identify barriers and facilitators to this testing, including the role of genetic counseling and consideration of upfront paired somatic-germline testing.

14.
J Clin Oncol ; 42(4): 441-451, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37978951

RESUMEN

PURPOSE: The PNOC001 phase II single-arm trial sought to estimate progression-free survival (PFS) associated with everolimus therapy for progressive/recurrent pediatric low-grade glioma (pLGG) on the basis of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway activation as measured by phosphorylated-ribosomal protein S6 and to identify prognostic and predictive biomarkers. PATIENTS AND METHODS: Patients, age 3-21 years, with progressive/recurrent pLGG received everolimus orally, 5 mg/m2 once daily. Frequency of driver gene alterations was compared among independent pLGG cohorts of newly diagnosed and progressive/recurrent patients. PFS at 6 months (primary end point) and median PFS (secondary end point) were estimated for association with everolimus therapy. RESULTS: Between 2012 and 2019, 65 subjects with progressive/recurrent pLGG (median age, 9.6 years; range, 3.0-19.9; 46% female) were enrolled, with a median follow-up of 57.5 months. The 6-month PFS was 67.4% (95% CI, 60.0 to 80.0) and median PFS was 11.1 months (95% CI, 7.6 to 19.8). Hypertriglyceridemia was the most common grade ≥3 adverse event. PI3K/AKT/mTOR pathway activation did not correlate with clinical outcomes (6-month PFS, active 68.4% v nonactive 63.3%; median PFS, active 11.2 months v nonactive 11.1 months; P = .80). Rare/novel KIAA1549::BRAF fusion breakpoints were most frequent in supratentorial midline pilocytic astrocytomas, in patients with progressive/recurrent disease, and correlated with poor clinical outcomes (median PFS, rare/novel KIAA1549::BRAF fusion breakpoints 6.1 months v common KIAA1549::BRAF fusion breakpoints 16.7 months; P < .05). Multivariate analysis confirmed their independent risk factor status for disease progression in PNOC001 and other, independent cohorts. Additionally, rare pathogenic germline variants in homologous recombination genes were identified in 6.8% of PNOC001 patients. CONCLUSION: Everolimus is a well-tolerated therapy for progressive/recurrent pLGGs. Rare/novel KIAA1549::BRAF fusion breakpoints may define biomarkers for progressive disease and should be assessed in future clinical trials.


Asunto(s)
Everolimus , Glioma , Humanos , Niño , Femenino , Preescolar , Adolescente , Adulto Joven , Adulto , Masculino , Everolimus/efectos adversos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas , Glioma/tratamiento farmacológico , Glioma/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/uso terapéutico , Biomarcadores
15.
Nat Med ; 30(1): 207-217, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37978284

RESUMEN

BRAF genomic alterations are the most common oncogenic drivers in pediatric low-grade glioma (pLGG). Arm 1 (n = 77) of the ongoing phase 2 FIREFLY-1 (PNOC026) trial investigated the efficacy of the oral, selective, central nervous system-penetrant, type II RAF inhibitor tovorafenib (420 mg m-2 once weekly; 600 mg maximum) in patients with BRAF-altered, relapsed/refractory pLGG. Arm 2 (n = 60) is an extension cohort, which provided treatment access for patients with RAF-altered pLGG after arm 1 closure. Based on independent review, according to Response Assessment in Neuro-Oncology High-Grade Glioma (RANO-HGG) criteria, the overall response rate (ORR) of 67% met the arm 1 prespecified primary endpoint; median duration of response (DOR) was 16.6 months; and median time to response (TTR) was 3.0 months (secondary endpoints). Other select arm 1 secondary endpoints included ORR, DOR and TTR as assessed by Response Assessment in Pediatric Neuro-Oncology Low-Grade Glioma (RAPNO) criteria and safety (assessed in all treated patients and the primary endpoint for arm 2, n = 137). The ORR according to RAPNO criteria (including minor responses) was 51%; median DOR was 13.8 months; and median TTR was 5.3 months. The most common treatment-related adverse events (TRAEs) were hair color changes (76%), elevated creatine phosphokinase (56%) and anemia (49%). Grade ≥3 TRAEs occurred in 42% of patients. Nine (7%) patients had TRAEs leading to discontinuation of tovorafenib. These data indicate that tovorafenib could be an effective therapy for BRAF-altered, relapsed/refractory pLGG. ClinicalTrials.gov registration: NCT04775485 .


Asunto(s)
Luciérnagas , Glioma , Humanos , Niño , Animales , Proteínas Proto-Oncogénicas B-raf/genética , Glioma/tratamiento farmacológico , Glioma/genética
16.
Cancer ; 119(14): 2645-53, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23625626

RESUMEN

BACKGROUND: Chemotherapy has improved the outcome of patients with newly diagnosed osteosarcoma, but its role in relapsed disease is unclear. METHODS: We reviewed the records of all patients who were treated for relapsed high-grade osteosarcoma at our institution between 1970 and 2004. Postrelapse event-free survival (PREFS) and postrelapse survival (PRS) were estimated, and outcome comparisons were made using an exact log-rank test. RESULTS: The 10-year PREFS and PRS of the 110 patients were 11.8% ± 3.5% and 17.0% ± 4.3%, respectively. Metastasis at initial diagnosis (14%), and relapse in lung only (75%) were not significantly associated with PREFS or PRS. Time from initial diagnosis to first relapse (RL1) ≥18 months (43%), surgery at RL1 (76%), and ability to achieve second complete remission (CR2, 56%) were favorably associated with PREFS and PRS (P ≤ 0.0002). In patients without CR2, chemotherapy at RL1 was favorably associated with PREFS (P = 0.01) but not with PRS. In patients with lung relapse only, unilateral relapse and number of nodules ( ≤ 3) were associated with better PREFS and PRS (P ≤ 0.0005); no patients with bilateral relapse survived 10 years. The median PREFS after treatment with cisplatin, doxorubicin, methotrexate, and ifosfamide was 3.5 months (95% confidence interval, 2.1-5.2), and the median PRS was 8.2 months (95% confidence interval, 5.2-15.1). CONCLUSIONS: Late relapse, surgical resection, and unilateral involvement (in lung relapse only) favorably impact outcome after relapse. Surgery is essential for survival; chemotherapy may slow disease progression in patients without CR2. These data are useful for designing clinical trials that evaluate novel agents.


Asunto(s)
Neoplasias Óseas/mortalidad , Osteosarcoma/mortalidad , Adolescente , Adulto , Neoplasias Óseas/patología , Niño , Preescolar , Estudios de Cohortes , Supervivencia sin Enfermedad , Femenino , Hospitales Pediátricos/estadística & datos numéricos , Humanos , Estimación de Kaplan-Meier , Masculino , Registros Médicos , Clasificación del Tumor , Osteosarcoma/patología , Recurrencia , Estudios Retrospectivos , Distribución por Sexo , Tennessee/epidemiología , Adulto Joven
17.
Neoplasia ; 43: 100921, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37603953

RESUMEN

Constitutional mismatch repair deficiency (CMMRD) is a cancer predisposition syndrome associated with the development of hypermutant pediatric high-grade glioma, and confers a poor prognosis. While therapeutic histone deacetylase (HDAC) inhibition of diffuse intrinsic pontine glioma (DIPG) has been reported; here, we use a clinically relevant biopsy-derived hypermutant DIPG model (PBT-24FH) and a CRISPR-Cas9 induced genetic model to evaluate the efficacy of HDAC inhibition against hypermutant DIPG. We screened PBT-24FH cells for sensitivity to a panel of HDAC inhibitors (HDACis) in vitro, identifying two HDACis associated with low nanomolar IC50s, quisinostat (27 nM) and romidepsin (2 nM). In vivo, quisinostat proved more efficacious, inducing near-complete tumor regression in a PBT-24FH flank model. RNA sequencing revealed significant quisinostat-driven changes in gene expression, including upregulation of neural and pro-inflammatory genes. To validate the observed potency of quisinostat in vivo against additional hypermutant DIPG models, we tested quisinostat in genetically-induced mismatch repair (MMR)-deficient DIPG flank tumors, demonstrating that loss of MMR function increases sensitivity to quisinostat in vivo. Here, we establish the preclinical efficacy of quisinostat against hypermutant DIPG, supporting further investigation of epigenetic targeting of hypermutant pediatric cancers with the potential for clinical translation. These findings support further investigation of HDAC inhibitors against pontine high-grade gliomas, beyond only those with histone mutations, as well as against other hypermutant central nervous system tumors.


Asunto(s)
Glioma Pontino Intrínseco Difuso , Glioma , Humanos , Niño , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Inhibidores de Histona Desacetilasas/farmacología , Histonas , Ácidos Hidroxámicos , Glioma/tratamiento farmacológico , Glioma/genética
18.
Neoplasia ; 36: 100870, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36599192

RESUMEN

Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. Based on adoptive cellular therapy's clinical success against childhood leukemia and the preclinical efficacy against pediatric CNS tumors, chimeric antigen receptor (CAR) T cells offer hope of improving outcomes for recurrent tumors and universally fatal diseases such as diffuse intrinsic pontine glioma (DIPG). However, a major obstacle for tumors of the brain and spine is ineffective T cell chemotaxis to disease sites. Locoregional CAR T cell delivery via infusion through an intracranial catheter is currently under study in multiple early phase clinical trials. Here, we describe the Seattle Children's single-institution experience including the multidisciplinary process for the preparation of successful, repetitive intracranial T cell infusion for children and the catheter-related safety of our 307 intracranial CAR T cell doses.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Niño , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfocitos T , Neoplasias Encefálicas/patología , Neoplasias del Sistema Nervioso Central/terapia , Catéteres
19.
Cancer Discov ; 13(1): 114-131, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36259971

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) remains a fatal brainstem tumor demanding innovative therapies. As B7-H3 (CD276) is expressed on central nervous system (CNS) tumors, we designed B7-H3-specific chimeric antigen receptor (CAR) T cells, confirmed their preclinical efficacy, and opened BrainChild-03 (NCT04185038), a first-in-human phase I trial administering repeated locoregional B7-H3 CAR T cells to children with recurrent/refractory CNS tumors and DIPG. Here, we report the results of the first three evaluable patients with DIPG (including two who enrolled after progression), who received 40 infusions with no dose-limiting toxicities. One patient had sustained clinical and radiographic improvement through 12 months on study. Patients exhibited correlative evidence of local immune activation and persistent cerebrospinal fluid (CSF) B7-H3 CAR T cells. Targeted mass spectrometry of CSF biospecimens revealed modulation of B7-H3 and critical immune analytes (CD14, CD163, CSF-1, CXCL13, and VCAM-1). Our data suggest the feasibility of repeated intracranial B7-H3 CAR T-cell dosing and that intracranial delivery may induce local immune activation. SIGNIFICANCE: This is the first report of repeatedly dosed intracranial B7-H3 CAR T cells for patients with DIPG and includes preliminary tolerability, the detection of CAR T cells in the CSF, CSF cytokine elevations supporting locoregional immune activation, and the feasibility of serial mass spectrometry from both serum and CSF. This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Humanos , Antígenos B7 , Neoplasias del Tronco Encefálico/terapia , Linfocitos T
20.
Bioinformatics ; 27(15): 2098-103, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21697127

RESUMEN

MOTIVATION: Animal models play a pivotal role in translation biomedical research. The scientific value of an animal model depends on how accurately it mimics the human disease. In principle, microarrays collect the necessary data to evaluate the transcriptomic fidelity of an animal model in terms of the similarity of expression with the human disease. However, statistical methods for this purpose are lacking. RESULTS: We develop the agreement of differential expression (AGDEX) procedure to measure and determine the statistical significance of the similarity of the results of two experiments that measure differential expression across two groups. AGDEX defines a metric of agreement and determines statistical significance by permutation of each experiment's group labels. Additionally, AGDEX performs a comprehensive permutation-based analysis of differential expression for each experiment, including gene-set analyses and meta-analytic integration of results across studies. As an example, we show how AGDEX was recently used to evaluate the similarity of the transcriptome of a novel model of the brain tumor ependymoma in mice to that of a subtype of the human disease. This result, combined with other observations, helped us to infer the cell of origin of this devastating human cancer. AVAILABILITY: An R package is currently available from www.stjuderesearch.org/site/depts/biostats/agdex and will shortly be available from www.bioconductor.org.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genómica/métodos , Modelos Estadísticos , Animales , Biología Computacional/métodos , Modelos Animales de Enfermedad , Ependimoma/genética , Humanos , Metaanálisis como Asunto , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA