Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Res Natl Inst Stand Technol ; 125: 125026, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-39015414

RESUMEN

It has long been a goal of the body armor testing community to establish an individualized, scientific-based protocol for predicting the ballistic performance end of life for fielded body armor. A major obstacle in achieving this goal is the test methods used to ascertain ballistic performance, which are destructive in nature and require large sample sizes. In this work, using both the Cunniff and Phoenix-Porwal models, we derived two separate but similar theoretical relationships between the observed degradation in mechanical properties of aged body armor and its decreased ballistic performance. We present two studies used to validate the derived functions. The first correlates the degradation in mechanical properties of fielded body armor to the degradation produced by a laboratory accelerated-aging protocol. The second examines the ballistic resistance and the extracted-yarn mechanical properties of new and laboratory-aged body armor made from poly(p-phenylene-2,6-benzobisoxazole), or PBO, and poly(p-phenylene terephthalamide), or PPTA. We present correlations found between the tensile strengths of yarns extracted from armor and the ballistic limit (V50) when significant degradation of the mechanical properties of the extracted yarns was observed. These studies provided the basis for a validation data set in which we compared the experimentally measured V50 ballistic limit results to the theoretically predicted V50 results. The theoretical estimates were generally shown to provide a conservative prediction of the ballistic performance of the armor. This approach is promising for the development of a tool for fielded armor performance surveillance relying upon mechanical testing of armor coupon samples.

2.
Anal Bioanal Chem ; 404(6-7): 1877-86, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22850897

RESUMEN

Perchlorate, an inorganic anion, has recently been recognized as an environmental contaminant by the US Environmental Protection Agency. Urine is the preferred matrix for assessment of human exposure to perchlorate. Although the measurement technique for perchlorate in urine was developed in 2005, the calibration and quality assurance aspects of the metrology infrastructure for perchlorate are still lacking in that there is no certified reference material (CRM) traceable to the International System of Units. To meet the quality assurance needs in biomonitoring measurements of perchlorate and the related anions that affect thyroid health, the National Institute of Standards and Technology (NIST), in collaboration with the Centers for Disease Control and Prevention (CDC), developed Standard Reference Material (SRM) 3668 Mercury, Perchlorate, and Iodide in Frozen Human Urine. SRM 3668 consists of perchlorate, nitrate, thiocyanate, iodine, and mercury in urine at two levels that represent the 50th and 95th percentiles, respectively, of the concentrations (with some adjustments) in the US population. It is the first CRM being certified for perchlorate. Measurements leading to the certification of perchlorate were made collaboratively at NIST and CDC using three methods based on liquid or ion chromatography tandem mass spectrometry. Potential sources of bias were analyzed, and results were compared for the three methods. Perchlorate in SRM 3668 Level I urine was certified to be 2.70 ± 0.21 µg L(-1), and for SRM 3668 Level II urine, the certified value is 13.47 ± 0.96 µg L(-1).


Asunto(s)
Cromatografía Liquida/normas , Percloratos/orina , Espectrometría de Masas en Tándem/normas , Orina/química , Cromatografía Liquida/métodos , Exposición a Riesgos Ambientales/análisis , Humanos , Estándares de Referencia , Espectrometría de Masas en Tándem/métodos , Estados Unidos
3.
J Radioanal Nucl Chem ; 299(3): 1555-1563, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26300575

RESUMEN

A newly developed procedure for determination of arsenic by radiochemical neutron activation analysis (RNAA) was used to measure arsenic at four levels in SRM 955c Toxic Elements in Caprine Blood and at two levels in SRM 2668 Toxic Elements in Frozen Human Urine for the purpose of providing mass concentration values for certification. Samples were freeze-dried prior to analysis followed by neutron irradiation for 3 h at a fluence rate of 1×1014cm-2s-1. After sample dissolution in perchloric and nitric acids, arsenic was separated from the matrix by extraction into zinc diethyldithiocarbamate in chloroform, and 76As quantified by gamma-ray spectroscopy. Differences in chemical yield and counting geometry between samples and standards were monitored by measuring the count rate of a 77As tracer added before sample dissolution. RNAA results were combined with inductively coupled plasma - mass spectrometry (ICP-MS) values from NIST and collaborating laboratories to provide certified values of (10.81 ± 0.54) µg/kg and (213.1 ± 0.73) µg/kg for SRM 2668 Levels I and II, and certified values of (21.66 ± 0.73) µg/kg, (52.7 ± 1.1) µg/kg, and (78.8 ± 4.9) µg/kg for SRM 955c Levels 2, 3, and 4 respectively. Because of discrepancies between values obtained by different methods for SRM 955c Level 1, an information value of < 5 µg/kg was assigned for this material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA