Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pineal Res ; 76(4): e12957, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38803089

RESUMEN

Recently, microorganism and exogenous melatonin application has been recognized as an efficient biological tool for enhancing salt tolerance and heavy metal detoxification in agriculture crops. Thus, the goal of this study was to isolate and evaluate a novel melatonin-producing plant growth promoting bacterium. With high-throughput whole genome sequencing, phytohormone measurements, expression profiling, and biochemical analysis, we can identify a novel PGPB that produces melatonin and unravel how it promotes soybean growth and development and protects against salt and Cd stress. We identify the melatonin synthesis pathway (tryptophan→tryptamine→serotonin melatonin) of the halotolerant (NaCl > 800 mM) and heavy metal-resistant (Cd >3 mM) rhizobacterium Bacillus safensis EH143 and use it to treat soybean plants subjected to Cd and NaCl stresses. Results show that EH143 will highly bioaccumulate heavy metals and significantly improve P and Ca2+ uptake and the K+/Na+ (93%↑under salt stress) ratio while reducing Cd uptake (49% under Cd stress) in shoots. This activity was supported by the expression of the ion regulator HKT1, MYPB67, and the calcium sensors CDPK5 and CaMK1 which ultimately led to increased plant growth. EH143 significantly decreased ABA content in shoots by 13%, 20%, and 34% and increased SA biosynthesis in shoots by 14.8%, 31%, and 48.2% in control, salt, and Cd-treated plants, upregulating CYP707A1 and CYP707A2 and PAL1 and ICS, respectively. The melatonin content significantly decreased along with a reduced expression of ASMT3 following treatment with EH143; moreover, reduced expression of peroxidase (POD) and superoxide dismutase (SOD) by 134.5% and 39% under salt+Cd stress, respectively and increased level of total amino acids were observed. Whole-genome sequencing and annotation of EH143 revealed the presence of the melatonin precursor tryptophan synthase (trpA, trpB, trpS), metal and other ion regulators (Cd: cadA, potassium: KtrA and KtrB, phosphate: glpT, calcium: yloB, the sodium/glucose cotransporter: sgIT, and the magnesium transporter: mgtE), and enzyme activators (including the siderophore transport proteins yfiZ and yfhA, the SOD sodA, the catalase katA1, and the glutathione regulator KefG) that may be involved in programming the plant metabolic system. As a consequence, EH143 treatment significantly reduced the contents of lipid peroxidation (O2-, MDA, and H2O2) up to 69%, 46%, and 29% in plants under salt+Cd stress, respectively. These findings suggest that EH143 could be a potent biofertilizer to alleviate NaCl and Cd toxicity in crops and serve as an alternative substitute for exogenous melatonin application.


Asunto(s)
Bacillus , Cadmio , Glycine max , Melatonina , Melatonina/metabolismo , Glycine max/metabolismo , Glycine max/efectos de los fármacos , Glycine max/microbiología , Cadmio/metabolismo , Bacillus/metabolismo , Estrés Salino , Estrés Fisiológico/efectos de los fármacos , Tolerancia a la Sal
2.
Sci Rep ; 13(1): 732, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639689

RESUMEN

The recent advances in deep learning-based approaches hold great promise for unravelling biological mechanisms, discovering biomarkers, and predicting gene function. Here, we deployed a deep generative model for simulating the molecular progression of tauopathy and dissecting its early features. We applied generative adversarial networks (GANs) for bulk RNA-seq analysis in a mouse model of tauopathy (TPR50-P301S). The union set of differentially expressed genes from four comparisons (two phenotypes with two time points) was used as input training data. We devised four-way transition curves for a virtual simulation of disease progression, clustered and grouped the curves by patterns, and identified eight distinct pattern groups showing different biological features from Gene Ontology enrichment analyses. Genes that were upregulated in early tauopathy were associated with vasculature development, and these changes preceded immune responses. We confirmed significant disease-associated differences in the public human data for the genes of the different pattern groups. Validation with weighted gene co-expression network analysis suggested that our GAN-based approach can be used to detect distinct patterns of early molecular changes during disease progression, which may be extremely difficult in in vivo experiments. The generative model is a valid systematic approach for exploring the sequential cascades of mechanisms and targeting early molecular events related to dementia.


Asunto(s)
Tauopatías , Ratones , Animales , Humanos , Simulación por Computador , Tauopatías/genética , Perfilación de la Expresión Génica , RNA-Seq , Progresión de la Enfermedad
3.
Plants (Basel) ; 12(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36679023

RESUMEN

The plant St. John's wort contains high levels of melatonin, an important biochemical that has both beneficial and adverse effects on stress. Therefore, a method for increasing melatonin levels in plants without adversely affecting their growth is economically important. In this study, we investigated the regulation of melatonin levels in St. John's wort by exposing samples to salinity stress (150 mM) and salicylic acid (0.25 mM) to augment stress tolerance. The results indicated that salinity stress significantly reduced the plant chlorophyll content and damaged the photosystem, plant growth and development. Additionally, these were reconfirmed with biochemical indicators; the levels of abscisic acid (ABA) and proline were increased and the activities of antioxidants were reduced. However, a significant increase was found in melatonin content under salinity stress through upregulation in the relative expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), and N-acetylserotonin methyltransferase (ASMT). The salicylic acid (SA) treatment considerably improved their photosynthetic activity, the maximum photochemical quantum yield (133%), the potential activity of PSⅡ (294%), and the performance index of electron flux to the final PS I electron acceptors (2.4%). On the other hand, SA application reduced ABA levels (32%); enhanced the activity of antioxidant enzymes, such as superoxide dismutase (SOD) (15.4%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (120%); and increased polyphenol (6.4%) and flavonoid (75.4%) levels in salinity-stressed St. John's wort plants. Similarly, SA application under NaCl stress significantly modulated the melatonin content in terms of ion balance; the level of melatonin was reduced after SA application on salt-treated seedlings but noticeably higher than on only SA-treated and non-treated seedlings. Moreover, the proline content was reduced considerably and growth parameters, such as plant biomass, shoot length, and chlorophyll content, were enhanced following treatment of salinity-stressed St. John's wort plants with salicylic acid. These findings demonstrate the beneficial impact of salt stress in terms of a cost-effective approach to extract melatonin in larger quantities from St. John's wort. They also suggest the efficiency of salicylic acid in alleviating stress tolerance and promoting growth of St. John's wort plants.

4.
Photochem Photobiol Sci ; 9(5): 697-703, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20442929

RESUMEN

The PsbS protein of photosystem II is necessary for the development of energy-dependent quenching of chlorophyll (Chl) fluorescence (qE), and PsbS-deficient Arabidopsis plant leaves failed to show qE-specific changes in the steady-state 77 K fluorescence emission spectra observed in wild-type leaves. The difference spectrum between the quenched and un-quenched states showed a negative peak at 682 nm. Although the level of qE development in the zeaxanthin-less npq1-2 mutant plants, which lacked violaxanthin de-epoxidase enzyme, was only half that of wild type, there were no noticeable changes in this qE-dependent difference spectrum. This zeaxanthin-independent DeltaF682 signal was not dependent on state transition, and the signal was not due to photobleaching of pigments either. These results suggest that DeltaF682 signal is formed due to PsbS-specific conformational changes in the quenching site of qE and is a new signature of qE generation in higher plants.


Asunto(s)
Proteínas de Arabidopsis , Complejos de Proteína Captadores de Luz , Complejo de Proteína del Fotosistema II , Xantófilas/química , Proteínas de Arabidopsis/genética , Fluorescencia , Complejos de Proteína Captadores de Luz/genética , Mutación , Fotoquímica , Complejo de Proteína del Fotosistema II/genética , Espectrometría de Fluorescencia/métodos , Zeaxantinas
5.
Appl Microbiol Biotechnol ; 86(3): 947-55, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20024543

RESUMEN

We isolated and characterized novel insoluble phosphate (P)-solubilizing bacteria tolerant to environmental factors like high salt, low and high pHs, and low temperature. A bacterium M6 was isolated from a ginseng rhizospheric soil and confirmed to belong to Burkholderia vietnamiensis by BIOLOG system and 16S rRNA gene analysis. The optimal cultural conditions for the solubilization of P were 2.5% (w/v) glucose, 0.015% (w/v) urea, and 0.4% (w/v) MgCl(2).6H(2)O along with initial pH 7.0 at 35 degrees C. High-performance liquid chromatography analysis showed that B. vietnamiensis M6 produced gluconic and 2-ketogluconic acids. During the culture, the pH was reduced with increase in gluconic acid concentration and was inversely correlated with P solubilization. Insoluble P solubilization in the optimal medium was about 902 mg l(-1), which was approximately 1.6-fold higher than the yield in NBRIP medium (580 mg l(-1)). B. vietnamiensis M6 showed resistance against different environmental stresses like 10-45 degrees C, 1-5% (w/v) salt, and 2-11 pH range. The maximal concentration of soluble P produced by B. vietnamiensis M6 from Ca(3)(PO(4))(2), CaHPO(4), and hydroxyapatite was 1,039, 2,132, and 1,754 mg l(-1), respectively. However, the strain M6 produced soluble P with 20 mg l(-1) from FePO(4) after 2 days and 100 mg l(-1) from AlPO(4) after 6 days, respectively. Our results indicate that B. vietnamiensis M6 could be a potential candidate for the development of biofertilizer applicable to environmentally stressed soil.


Asunto(s)
Burkholderia/metabolismo , Panax/microbiología , Fosfatos/metabolismo , Microbiología del Suelo , Burkholderia/clasificación , Burkholderia/genética , Burkholderia/aislamiento & purificación , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Gluconatos/metabolismo , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Temperatura
6.
Biotechnol Lett ; 30(3): 461-5, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17968508

RESUMEN

Bacillus pumilis F3-4 utilized feather as a sole source of carbon, nitrogen and sulfur. Supplementation of the feather medium with glucose or MgSO(4) . 7H(2)O increased keratinolytic protease production (14.6-16.7 U/mg). The synthesis of keratinolytic protease was repressed by an exogenous nitrogen source. Keratinolytic protease was produced in the absence of feather (9.4 U/mg). Feather degradation resulted in sulfhydryl group formation (0.8-2.6 microM). B. pumilis F3-4 effectively degraded chicken feather (75%), duck feather (81%) and feather meal (97%), whereas human nails, human hair and sheep wool under went less degradation (9-15%).


Asunto(s)
Bacillus/enzimología , Plumas/microbiología , Queratinas/metabolismo , Péptido Hidrolasas/metabolismo , Animales , Bacillus/crecimiento & desarrollo , Bacillus/aislamiento & purificación , Biodegradación Ambiental , Pollos , Medios de Cultivo , Plumas/metabolismo , Humanos , Queratinas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA