Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 724: 150226, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38865815

RESUMEN

In patients with high-level radiation exposure, gastrointestinal injury is the main cause of death. Despite the severity of damage to the gastrointestinal tract, no specific therapeutic option is available. Tauroursodeoxycholic acid (TUDCA) is a conjugated form of ursodeoxycholic acid that suppresses endoplasmic reticulum (ER) stress and regulates various cell-signaling pathways. We investigated the effect of TUDCA premedication in alleviating intestinal damage and enhancing the survival of C57BL/6 mice administered a lethal dose (15Gy) of focal abdominal irradiation. TUDCA was administered to mice 1 h before radiation exposure, and reduced apoptosis of the jejunal crypts 12 h after irradiation. At later timepoint (3.5 days), irradiated mice manifested intestinal morphological changes that were detected via histological examination. TUDCA decreased the inflammatory cytokine levels and attenuated the decrease in serum citrulline levels after radiation exposure. Although radiation induced ER stress, TUDCA pretreatment decreased ER stress in the irradiated intestinal cells. The effect of TUDCA indicates the possibility of radiation therapy for cancer in tumor cells. TUDCA did not affect cell proliferation and apoptosis in the intestinal epithelium. TUDCA decreased the invasive ability of the CT26 metastatic colon cancer cell line. Reduced invasion after TUDCA treatment was associated with decreased matrix metalloproteinase (MMP)-7 and MMP-13 expression, which play important roles in invasion and metastasis. This study shows a potential role of TUDCA in protecting against radiation-induced intestinal damage and inhibiting tumor cell migration without any radiation and radiation therapy effect.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Ratones Endogámicos C57BL , Protectores contra Radiación , Ácido Tauroquenodesoxicólico , Animales , Ácido Tauroquenodesoxicólico/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de la radiación , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Protectores contra Radiación/farmacología , Ratones , Masculino , Intestinos/efectos de la radiación , Intestinos/efectos de los fármacos , Intestinos/patología , Modelos Animales de Enfermedad , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de la radiación , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Traumatismos Experimentales por Radiación/prevención & control , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Traumatismos Experimentales por Radiación/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación
2.
J Integr Neurosci ; 23(7): 138, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39082299

RESUMEN

BACKGROUND: DNA methylation forms 5-methylcytosine and its regulation in the hippocampus is critical for learning and memory. Indeed, dysregulation of DNA methylation is associated with neurological diseases. Alzheimer's disease (AD) is the predominant of dementia and a neurodegenerative disorder. METHODS: We examined the learning and memory function in 3- and 9-month-old wild-type and 5xfamiliar Alzheimer's disease (5xFAD) transgenic mice by performing the object recognition memory and Y-maze tests, and identified the hippocampal amyloid beta burden. To investigate the epigenetically regulated genes involved in the development or neuropathology of AD, we performed genome-wide DNA methylation sequencing and RNA sequencing analyses in the hippocampus of 9-month-old wild-type and 5xFAD tg mice. To validate the genes inversely regulated by epigenetics, we confirmed their methylation status and mRNA levels. RESULTS: At 9 months of age, 5xFAD tg mice showed significant cognitive impairment and amyloid-beta plaques in the hippocampus. DNA methylation sequencing identified a total of 13,777 differentially methylated regions, including 4484 of hyper- and 9293 of hypomethylated regions, that are associated with several gene ontology (GO) terms including 'nervous system development' and 'axon guidance'. In RNA sequencing analysis, we confirmed a total of 101 differentially expressed genes, including 52 up- and 49 downregulated genes, associated with GO functions such as 'positive regulation of synaptic transmission, glutamatergic' and 'actin filament organization'. Through further integrated analysis of DNA methylation and RNA sequencing, three epigenetically regulated genes were selected: thymus cell antigen 1, theta (Thy1), myosin VI (Myo6), and filamin A-interacting protein 1-like (Filip1l). The methylation level of Thy1 decreased and its mRNA levels increased, whereas that of Myo6 and Filip1l increased and their mRNA levels decreased. The common functions of these three genes may be associated with the neural cytoskeleton and synaptic plasticity. CONCLUSIONS: We suggest that the candidate genes epigenetically play a role in AD-associated neuropathology (i.e., amyloid-beta plaques) and memory deficit by influencing neural structure and synaptic plasticity. Furthermore, counteracting dysregulated epigenetic changes may delay or ameliorate AD onset or symptoms.


Asunto(s)
Enfermedad de Alzheimer , Metilación de ADN , Modelos Animales de Enfermedad , Hipocampo , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Hipocampo/metabolismo , Ratones , Expresión Génica , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Masculino , Humanos , Ratones Endogámicos C57BL
3.
J Biol Chem ; 298(4): 101793, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35248533

RESUMEN

Atmospheric-pressure plasmas have been widely applied for surface modification and biomedical treatment because of their ability to generate highly reactive radicals and charged particles. In negative-stain electron microscopy (Neg-EM) and cryogenic electron microscopy (cryo-EM), plasmas have been used to generate hydrophilic surfaces and eliminate surface contaminants to embed specimens onto grids. In addition, plasma treatment is a prerequisite for negative-stain and Quantifoil grids, whose surfaces are coated with hydrophobic amorphous carbon. Although the conventional glow discharge system has been used successfully in this purpose, there has been no further effort to take an advantage from the recent progress in the plasma field. Here, we developed a nonthermal atmospheric plasma jet system as an alternative tool for treatment of surfaces. The low-temperature plasma is a nonequilibrium system that has been widely used in biomedical area. Unlike conventional glow discharge systems, the plasma jet system successfully cleans and introduces hydrophilicity on the grid surface in the ambient environment without a vacuum. Therefore, we anticipate that the plasma jet system will have numerous benefits, such as convenience and versatility, as well as having potential applications in surface modification for both negative-stain and cryo-EM grid treatment.


Asunto(s)
Microscopía por Crioelectrón , Frío , Microscopía por Crioelectrón/instrumentación , Vacio
4.
J Therm Biol ; 110: 103350, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36462859

RESUMEN

Radiofrequency radiation (RFR) can generate heat in living organisms. In this study, we monitored the body temperature of healthy animals during RFR exposure in real time using an implantable iButton data logger. A reverberation chamber system for small animals was used for this radiofrequency (RF) exposure in vivo study. Healthy male Sprague-Dawley rats were divided into two groups: with versus without iButton implantation (n = 20 per group). Each group was further divided into a sham-exposed and RF-exposed group (n = 10 per subgroup). Rats were exposed to a 1,760-MHz long-term evolution (LTE) signal in the reverberation chamber system at a whole-body average specific absorption rate of 0 W/kg (sham-exposed) or 4 W/kg (RF-exposed) for 6 h. The body temperature of iButton-implanted rats was recorded using an intraperitoneally implanted iButton every minute over 6 h of RF exposure, whereas that of non-implanted rats was measured directly using a rectal thermometer immediately before and after the 6-h RF exposure period. The temperature values measured by the two types of thermometers were significantly positively correlated (r = 0.63, P < 0.01, linear regression), and changes in body temperatures recorded in iButton-implanted and non-implanted rats measured using two thermometers after 6 h of RF exposure were maintained within <1°C (P = 0.87, general linear model, followed by univariate model). Similar results were obtained for rectal thermometer measurements (P = 0.12, paired t-test). These results suggest that RF exposure at a whole-body average specific absorption rate of 4 W/kg does not induce significant changes in body temperature in healthy rats over a 6-h RF exposure period.


Asunto(s)
Temperatura Corporal , Ondas de Radio , Masculino , Ratas , Animales , Ratas Sprague-Dawley , Calor , Modelos Lineales
5.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955709

RESUMEN

High doses of ionizing radiation can cause cardiovascular diseases (CVDs); however, the effects of <100 mGy radiation on CVD remain underreported. Endothelial cells (ECs) play major roles in cardiovascular health and disease, and their function is reduced by stimuli such as chronic disease, metabolic disorders, and smoking. However, whether exposure to low-dose radiation results in the disruption of similar molecular mechanisms in ECs under diabetic and non-diabetic states remains largely unknown; we aimed to address this gap in knowledge through the molecular and functional characterization of primary human aortic endothelial cells (HAECs) derived from patients with type 2 diabetes (T2D-HAECs) and normal HAECs in response to low-dose radiation. To address these limitations, we performed RNA sequencing on HAECs and T2D-HAECs following exposure to 100 mGy of ionizing radiation and examined the transcriptome changes associated with the low-dose radiation. Compared with that in the non-irradiation group, low-dose irradiation induced 243 differentially expressed genes (DEGs) (133 down-regulated and 110 up-regulated) in HAECs and 378 DEGs (195 down-regulated and 183 up-regulated) in T2D-HAECs. We also discovered a significant association between the DEGs and the interferon (IFN)-I signaling pathway, which is associated with CVD by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein−protein network analysis, and module analysis. Our findings demonstrate the potential impact of low-dose radiation on EC functions that are related to the risk of CVD.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Aorta/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Humanos , Transcriptoma
6.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35456989

RESUMEN

Radiation-induced skin injury (RISI) is a main side effect of radiotherapy for cancer patients, with vascular damage being a common pathogenesis of acute and chronic RISI. Despite the severity of RISI, there are few treatments for it that are in clinical use. 2-Methoxyestradiol (2-ME) has been reported to regulate the radiation-induced vascular endothelial-to-mesenchymal transition. Thus, we investigated 2-ME as a potent anti-cancer and hypoxia-inducible factor 1 alpha (HIF-1α) inhibitor drug that prevents RISI by targeting HIF-1α. 2-ME treatment prior to and post irradiation inhibited RISI on the skin of C57/BL6 mice. 2-ME also reduced radiation-induced inflammation, skin thickness, and vascular fibrosis. In particular, post-treatment with 2-ME after irradiation repaired the damaged vessels on the irradiated dermal skin, inhibiting endothelial HIF-1α expression. In addition to the increase in vascular density, post-treatment with 2-ME showed fibrotic changes in residual vessels with SMA+CD31+ on the irradiated skin. Furthermore, 2-ME significantly inhibited fibrotic changes and accumulated DNA damage in irradiated human dermal microvascular endothelial cells. Therefore, we suggest that 2-ME may be a potent therapeutic agent for RISI.


Asunto(s)
Células Endoteliales , Traumatismos por Radiación , 2-Metoxiestradiol/farmacología , Animales , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Mercaptoetanol , Ratones , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/etiología , Piel
7.
Int Endod J ; 54(9): 1548-1556, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33938023

RESUMEN

AIM: To evaluate whether the use of non-thermal plasma (NTP) could reduce triethylene glycol dimethacrylate (TEGDMA)-mediated damage in MDPC-23 cells. METHODOLOGY: The effects of NTP and TEGDMA on MDPC-23 cell proliferation were tested using WST-1 assays after pretreatment with NTP for 1 min and exposure to TEGDMA. Live/Dead assays were used to visualize cell death. To monitor the effects of NTP and TEGDMA on the cell cycle and apoptotic cell death, flow cytometry was performed. Western blotting was used to assess changes in protein levels mediated by NTP and TEGDMA treatment, and enzyme-linked immunosorbent assays were performed to evaluate the effects of NTP and TEGDMA on prostaglandin E2 (PGE2 ) expression. One-way analysis of variance and Duncan's post hoc tests were used for statistical analysis. RESULTS: NTP treatment effectively protected cells from TEGDMA-mediated cell damage and blocked TEGDMA-mediated cell growth inhibition (p < .05). NTP appeared to protect cells from death (p < .05) and blocked TEGDMA-mediated apoptotic cell death. Additionally, NTP reduced TEGDMA-mediated apoptotic activation of poly (ADP) ribose polymerase-1 and caspase-3 (p < .05). Furthermore, NTP effectively reduced TEGDMA-mediated expression of cyclooxygenase-2 and PGE2 proteins by inhibiting nuclear factor-κB protein expression (p < .05). CONCLUSIONS: NTP alleviated TEGDMA-mediated adverse effects by reducing cytotoxicity and inflammatory reactions in cells exposed to TEGDMA.


Asunto(s)
Odontoblastos , Gases em Plasma , Humanos , Polietilenglicoles , Ácidos Polimetacrílicos/toxicidad
8.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921230

RESUMEN

Hepatocellular carcinoma (HCC) is a major histological subtype of primary liver cancer. Ample evidence suggests that the pathological properties of HCC originate from hepatic cancer stem cells (CSCs), which are responsible for carcinogenesis, recurrence, and drug resistance. Cold atmospheric-pressure plasma (CAP) and plasma-activated medium (PAM) induce apoptosis in cancer cells and represent novel and powerful anti-cancer agents. This study aimed to determine the anti-cancer effect of CAP and PAM in HCC cell lines with CSC characteristics. We showed that the air-based CAP and PAM selectively induced cell death in Hep3B and Huh7 cells with CSC characteristics, but not in the normal liver cell line, MIHA. We observed both caspase-dependent and -independent cell death in the PAM-treated HCC cell lines. Moreover, we determined whether combinatorial PAM therapy with various anti-cancer agents have an additive effect on cell death in Huh7. We found that PAM highly increased the efficacy of the chemotherapeutic agent, cisplatin, while enhanced the anti-cancer effect of doxorubicin and the targeted-therapy drugs, trametinib and sorafenib to a lesser extent. These findings support the application of CAP and PAM as anti-cancer agents to induce selective cell death in cancers containing CSCs, suggesting that the combinatorial use of PAM and some specific anti-cancer agents is complemented mechanistically.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Medios de Cultivo/efectos de la radiación , Neoplasias Hepáticas/tratamiento farmacológico , Gases em Plasma , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Línea Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Medios de Cultivo/farmacología , Doxorrubicina/farmacología , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/efectos de la radiación
9.
Int J Mol Sci ; 22(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069373

RESUMEN

Despite liver cancer being the second-leading cause of cancer-related death worldwide, few systemic drugs have been approved. Sorafenib, the first FDA-approved systemic drug for unresectable hepatocellular carcinoma (HCC), is limited by resistance. However, the precise mechanisms underlying this phenomenon are unknown. Since fibrinogen-like 1 (FGL1) is involved in HCC progression and upregulated after anticancer therapy, we investigated its role in regulating sorafenib resistance in HCC. FGL1 expression was assessed in six HCC cell lines (HepG2, Huh7, Hep3B, SNU387, SNU449, and SNU475) using western blotting. Correlations between FGL1 expression and sorafenib resistance were examined by cell viability, colony formation, and flow cytometry assays. FGL1 was knocked-down to confirm its effects on sorafenib resistance. FGL1 expression was higher in HepG2, Huh7, and Hep3B cells than in SNU387, SNU449, and SNU475 cells; high FGL1-expressing HCC cells showed a lower IC50 and higher sensitivity to sorafenib. In Huh7 and Hep3B cells, FGL1 knockdown significantly increased colony formation by 61% (p = 0.0013) and 99% (p = 0.0002), respectively, compared to that in controls and abolished sorafenib-induced suppression of colony formation, possibly by modulating ERK and autophagy signals. Our findings demonstrate that sorafenib resistance mediated by FGL1 in HCC cells, suggesting FGL1 as a potential sorafenib-resistance biomarker and target for HCC therapy.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Resistencia a Antineoplásicos/fisiología , Fibrinógeno/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Fibrinógeno/fisiología , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Niacinamida/farmacología , Compuestos de Fenilurea/uso terapéutico , Transducción de Señal/efectos de los fármacos , Sorafenib/metabolismo , Sorafenib/farmacología
10.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34502282

RESUMEN

Global aging has led to growing health concerns posed by Alzheimer's disease (AD), the most common type of dementia. Aripiprazole is an atypical FDA-approved anti-psychotic drug with potential against AD. To investigate its therapeutic effects on AD pathology, we administered aripiprazole to 5xFAD AD model mice and examined beta-amyloid (ßA)-induced AD-like phenotypes, including ßA production, neuroinflammation, and cerebral glucose metabolism. Aripiprazole administration significantly decreased ßA accumulation in the brains of 5xFAD AD mice. Aripiprazole significantly modified amyloid precursor protein processing, including carboxyl-terminal fragment ß and ßA, a disintegrin and metalloproteinase domain-containing protein 10, and beta-site APP cleaving enzyme 1, as determined by Western blotting. Neuroinflammation, as evidenced by ionized calcium binding adapter molecule 1 and glial fibrillary acidic protein upregulation was dramatically inhibited, and the neuron cell layer of the hippocampal CA1 region was preserved following aripiprazole administration. In 18F-fluorodeoxyglucose positron emission tomography, after receiving aripiprazole, 5xFAD mice showed a significant increase in glucose uptake in the striatum, thalamus, and hippocampus compared to vehicle-treated AD mice. Thus, aripiprazole effectively alleviated ßA lesions and prevented the decline of cerebral glucose metabolism in 5xFAD AD mice, suggesting its potential for ßA metabolic modification and highlighting its therapeutic effect over AD progression.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Aripiprazol/farmacología , Encéfalo/efectos de los fármacos , Enfermedad de Alzheimer/etiología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Glucosa/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/etiología , Ratones Endogámicos C57BL , Ratones Transgénicos
11.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34681583

RESUMEN

Radiation therapy is a current standard-of-care treatment and is used widely for GBM patients. However, radiation therapy still remains a significant barrier to getting a successful outcome due to the therapeutic resistance and tumor recurrence. Understanding the underlying mechanisms of this resistance and recurrence would provide an efficient approach for improving the therapy for GBM treatment. Here, we identified a regulatory mechanism of CD44 which induces infiltration and mesenchymal shift of GBM. Ionizing radiation (IR)-induced K-RAS/ERK signaling activation elevates CD44 expression through downregulation of miR-202 and miR-185 expression. High expression of CD44 promotes SRC activation to induce cancer stemness and EMT features of GBM cells. In this study, we demonstrate that the K-RAS/ERK/CD44 axis is a key mechanism in regulating mesenchymal shift of GBM cells after irradiation. These findings suggest that blocking the K-RAS activation or CD44 expression could provide an efficient way for GBM treatment.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Receptores de Hialuranos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Radiación Ionizante , Transducción de Señal/efectos de la radiación , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Movimiento Celular/efectos de la radiación , Regulación hacia Abajo/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Humanos , Receptores de Hialuranos/antagonistas & inhibidores , Receptores de Hialuranos/genética , Estimación de Kaplan-Meier , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
12.
Int J Mol Sci ; 22(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066270

RESUMEN

With the rapid growth of the wireless communication industry, humans are extensively exposed to electromagnetic fields (EMF) comprised of radiofrequency (RF). The skin is considered the primary target of EMFs given its outermost location. Recent evidence suggests that extremely low frequency (ELF)-EMF can improve the efficacy of DNA repair in human cell-lines. However, the effects of EMF-RF on DNA damage remain unknown. Here, we investigated the impact of EMF-long term evolution (LTE, 1.762 GHz, 8 W/kg) irradiation on DNA double-strand break (DSB) using the murine melanoma cell line B16 and the human keratinocyte cell line HaCaT. EMF-LTE exposure alone did not affect cell viability or induce apoptosis or necrosis. In addition, DNA DSB damage, as determined by the neutral comet assay, was not induced by EMF-LTE irradiation. Of note, EMF-LTE exposure can attenuate the DNA DSB damage induced by physical and chemical DNA damaging agents (such as ionizing radiation (IR, 10 Gy) in HaCaT and B16 cells and bleomycin (BLM, 3 µM) in HaCaT cells and a human melanoma cell line MNT-1), suggesting that EMF-LTE promotes the repair of DNA DSB damage. The protective effect of EMF-LTE against DNA damage was further confirmed by attenuation of the DNA damage marker γ-H2AX after exposure to EMF-LTE in HaCaT and B16 cells. Most importantly, irradiation of EMF-LTE (1.76 GHz, 6 W/kg, 8 h/day) on mice in vivo for 4 weeks reduced the γ-H2AX level in the skin tissue, further supporting the protective effects of EMF-LTE against DNA DSB damage. Furthermore, p53, the master tumor-suppressor gene, was commonly upregulated by EMF-LTE irradiation in B16 and HaCaT cells. This finding suggests that p53 plays a role in the protective effect of EMF-LTE against DNA DSBs. Collectively, these results demonstrated that EMF-LTE might have a protective effect against DNA DSB damage in the skin, although further studies are necessary to understand its impact on human health.


Asunto(s)
Roturas del ADN de Doble Cadena , Campos Electromagnéticos , Queratinocitos/efectos de la radiación , Melanoma/prevención & control , Sustancias Protectoras , Radiación Ionizante , Ondas de Radio , Animales , Apoptosis , Supervivencia Celular , Reparación del ADN , Humanos , Técnicas In Vitro , Queratinocitos/metabolismo , Queratinocitos/patología , Masculino , Melanoma/etiología , Melanoma/patología , Ratones , Ratones Endogámicos C57BL
13.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34884637

RESUMEN

The adverse effects of radiation are proportional to the total dose and dose rate. We aimed to investigate the effects of radiation dose rate on different organs in mice. The mice were subjected to low dose rate (LDR, ~3.4 mGy/h) and high dose rate (HDR, ~51 Gy/h) radiation. LDR radiation caused severe tissue toxicity, as observed in the histological analysis of testis. It adversely influenced sperm production, including sperm count and motility, and induced greater sperm abnormalities. The expression of markers of early stage spermatogonial stem cells, such as Plzf, c-Kit, and Oct4, decreased significantly after LDR irradiation, compared to that following exposure of HDR radiation, in qPCR analysis. The compositional ratios of all stages of spermatogonia and meiotic cells, except round spermatid, were considerably reduced by LDR in FACS analysis. Therefore, LDR radiation caused more adverse testicular damage than that by HDR radiation, contrary to the response observed in other organs. Therefore, the dose rate of radiation may have differential effects, depending on the organ; it is necessary to evaluate the effect of radiation in terms of radiation dose, dose rate, organ type, and other conditions.


Asunto(s)
Espermatogénesis/efectos de la radiación , Testículo/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Masculino , Ratones , Modelos Animales , Dosis de Radiación , Espermátides/citología , Espermátides/efectos de la radiación , Espermatogonias/citología , Espermatogonias/efectos de la radiación , Espermatozoides/citología , Espermatozoides/efectos de la radiación , Testículo/citología
14.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756440

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease. In this study, to investigate the effect of microglial elimination on AD progression, we administered PLX3397, a selective colony-stimulating factor 1 receptor inhibitor, to the mouse model of AD (5xFAD mice). Amyloid-beta (Aß) deposition and amyloid precursor protein (APP), carboxyl-terminal fragment ß, ionized calcium-binding adaptor molecule 1, synaptophysin, and postsynaptic density (PSD)-95 levels were evaluated in the cortex and hippocampus. In addition, the receptor density changes in dopamine D2 receptor (D2R) and metabotropic glutamate receptor 5 were evaluated using positron emission tomography (PET). D2R, tyrosine hydroxylase (TH), and dopamine transporter (DAT) levels were analyzed in the brains of Tg (5xFAD) mice using immunohistochemistry. PLX3397 administration significantly decreased Aß deposition following microglial depletion in the cortex and hippocampus of Tg mice. In the neuro-PET studies, the binding values for D2R in the Tg mice were lower than those in the wild type mice; however, after PLX3397 treatment, the binding dramatically increased. PLX3397 administration also reversed the changes in synaptophysin and PSD-95 expression in the brain. Furthermore, the D2R and TH expression in the brains of Tg mice was significantly lower than that in the wild type; however, after PLX3397 administration, the D2R and TH levels were significantly higher than those in untreated Tg mice. Thus, our findings show that administering PLX3397 to aged 5xFAD mice could prevent amyloid pathology, concomitant with the rescue of dopaminergic signaling, suggesting that targeting microglia may serve as a useful therapeutic option for neurodegenerative diseases, including AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Aminopiridinas/farmacología , Péptidos beta-Amiloides/genética , Factor Estimulante de Colonias de Macrófagos/genética , Pirroles/farmacología , Receptores del Factor Estimulante de Colonias/genética , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/genética , Amiloide/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos , Transducción de Señal/efectos de los fármacos
15.
Int J Med Sci ; 15(11): 1203-1209, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30123058

RESUMEN

Non-thermal plasma (NTP) has several beneficial effects, and can be applied as a novel instrument for skin treatment. Recently, many types of NTP have been developed for potential medical or clinical applications, but their direct effects on skin activation remain unclear. In this study, the effect of NTP on the alteration of mouse skin tissue was analyzed. After NTP treatment, there were no signs of tissue damage in mouse skin, whereas significant increases in epidermal thickness and dermal collagen density were detected. Furthermore, treatment with NTP increased the expression of various growth factors, including TGF-α, TGF-ß, VEGF, GM-CSF, and EGF, in skin tissue. Therefore, NTP treatment on skin induces the expression of growth factors without causing damage, a phenomenon that might be directly linked to epidermal expansion and dermal tissue remodeling.


Asunto(s)
Citocinas/metabolismo , Gases em Plasma , Piel/metabolismo , Animales , Colágeno , Ratones , Factor de Crecimiento Transformador beta/metabolismo
16.
Int J Mol Sci ; 19(8)2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-30104472

RESUMEN

Although many attempts have been made to improve the efficacy of radiotherapy to treat cancer, radiation resistance is still an obstacle in lung cancer treatment. Oridonin is a natural compound with promising antitumor efficacy that can trigger cancer cell death; however, its direct cellular targets, efficacy as a radiosensitizer, and underlying mechanisms of activity remain unclear. Herein, we report that oridonin exhibits additive cytotoxic and antitumor activity with radiation using the H460 non-small cell lung cancer cell lines. We assessed the effect of oridonin by proliferation, clonogenic, reactive oxygen species (ROS) production, DNA damage, and apoptosis assays. In vitro, oridonin enhanced the radiation-induced inhibition of cell growth and clonogenic survival. Oridonin also facilitated radiation-induced ROS production and DNA damage and enhanced apoptotic cell death. In vivo, the combination of oridonin and radiation effectively inhibited H460 xenograft tumor growth, with higher caspase-3 activation and H2A histone family member X (H2AX) phosphorylation compared with that of radiation alone. Our findings suggest that oridonin possesses a novel mechanism to enhance radiation therapeutic responses by increasing DNA damage and apoptosis. In conclusion, oridonin may be a novel small molecule to improve radiotherapy in non-small cell lung cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Diterpenos de Tipo Kaurano/farmacología , Radiación Ionizante , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Apoptosis/efectos de la radiación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Caspasa 3/metabolismo , Línea Celular Tumoral , Daño del ADN/efectos de la radiación , Diterpenos de Tipo Kaurano/química , Diterpenos de Tipo Kaurano/uso terapéutico , Femenino , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Trasplante Heterólogo
17.
Int J Mol Sci ; 19(7)2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029554

RESUMEN

The expansion of mobile phone use has raised questions regarding the possible biological effects of radiofrequency electromagnetic field (RF-EMF) exposure on oxidative stress and brain inflammation. Despite accumulative exposure of humans to radiofrequency electromagnetic fields (RF-EMFs) from mobile phones, their long-term effects on oxidative stress and neuroinflammation in the aging brain have not been studied. In the present study, middle-aged C57BL/6 mice (aged 14 months) were exposed to 1950 MHz electromagnetic fields for 8 months (specific absorption rate (SAR) 5 W/kg, 2 h/day, 5 d/week). Compared with those in the young group, levels of protein (3-nitro-tyrosine) and lipid (4-hydroxy-2-nonenal) oxidative damage markers were significantly increased in the brains of aged mice. In addition, levels of markers for DNA damage (8-hydroxy-2'-deoxyguanosine, p53, p21, γH2AX, and Bax), apoptosis (cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase 1 (PARP-1)), astrocyte (GFAP), and microglia (Iba-1) were significantly elevated in the brains of aged mice. However, long-term RF-EMF exposure did not change the levels of oxidative stress, DNA damage, apoptosis, astrocyte, or microglia markers in the aged mouse brains. Moreover, long-term RF-EMF exposure did not alter locomotor activity in aged mice. Therefore, these findings indicate that long-term exposure to RF-EMF did not influence age-induced oxidative stress or neuroinflammation in C57BL/6 mice.


Asunto(s)
Envejecimiento/patología , Encéfalo/patología , Campos Electromagnéticos , Inflamación/patología , Estrés Oxidativo/efectos de la radiación , Ondas de Radio , Animales , Conducta Animal , Biomarcadores/metabolismo , Proteínas de Unión al Calcio/metabolismo , Caspasa 3/metabolismo , Daño del ADN , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Actividad Motora , Poli(ADP-Ribosa) Polimerasas/metabolismo
18.
Int J Med Sci ; 14(11): 1101-1109, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29104464

RESUMEN

Melanomas are fast growing high-mortality tumors, and specific treatments for melanomas are needed. Melanoma cells overexpress focal adhesion kinase (FAK) compared to normal keratinocytes, and we sought to exploit this difference to create a selectively lethal therapy. We combined gold nanoparticles (GNP) with antibodies targeting phosphorylated FAK (p-FAK). These conjugates (p-FAK-GNP) entered G361 melanoma cells and bound p-FAK. Treatment with p-FAK-GNP decreased the viability of G361 cells in a time dependent manner by inducing apoptosis. To maximize the preferential killing of G361 cells, non-thermal atmospheric pressure plasma was used to stimulate the GNP within p-FAK-GNP. Combined treatment with plasma and p-FAK-GNP showed much higher lethality against G361 cells than HaCaT keratinocyte cells. The p-FAK-GNP induced apoptosis over 48 hours in G361 cells, whereas plasma and p-FAK-GNP killed G361 cells immediately. This study demonstrates that combining plasma with p-FAK-GNP results in selective lethality against human melanoma cells.


Asunto(s)
Anticuerpos/química , Proteína-Tirosina Quinasas de Adhesión Focal/inmunología , Oro/química , Melanoma/metabolismo , Nanopartículas del Metal/química , Anticuerpos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Melanoma/tratamiento farmacológico , Fosforilación , Presión
19.
BMC Complement Altern Med ; 17(1): 340, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28655324

RESUMEN

BACKGROUND: Jaun-ointment (JO), also known as Shiunko in Japan, is one of the most popular medicinal formulae used in Korean traditional medicine for the external treatment of skin wound and inflammatory skin conditions. Since JO is composed of crude mixture of two herbal extracts (radix of Lithospermum erythrorhizon Siebold & Zucc and Angelica gigas Nakai), those been proved its anti-inflammatory activities in-vitro and in-vivo, JO has been expected as a good alternative treatment option for atopic dermatitis (AD). However, due to the lack of strategies for the penetrating methods of JO's various anti-inflammatory elements into the skin, an effective and safe transdermal drug delivery system needs to be determined. Here, low-temperature argon plasma (LTAP) was adopted as an ancillary partner of topically applied JO in a mice model of AD and the effectiveness was examined. METHODS: Dorsal skins of NC/Nga mice were challenged with DNCB (2,4-dinitrochlorobenzene) to induce AD. AD-like skin lesions were treated with JO alone, or in combination with LTAP. Inflammatory activity in the skin tissues was evaluated by histological analysis and several molecular biological tests. RESULTS: LTAP enhanced the effect of JO on AD-like skin lesion. Topical application of JO partially inhibited the development of DNCB-induced AD, shown by the moderate reduction of eosinophil homing and pro-inflammatory cytokine level. Combined treatment of JO and LTAP dramatically inhibited AD phenotypes. Interestingly, treatment with JO alone did not affect the activity of nuclear factor (NF)κB/RelA in the skin, but combined treatment of LTAP-JO blocked DCNB-mediated NFκB/RelA activation. CONCLUSIONS: LTAP markedly enhanced the anti-inflammatory activity of JO on AD-like skin lesions. The effect of LTAP may be attributed to enhancement of drug penetration and regulation of NFκB activity. Therefore, the combination treatment of JO and LTAP could be a potential strategy for the treatment of AD.


Asunto(s)
Antiinflamatorios/administración & dosificación , Argón/administración & dosificación , Dermatitis Atópica/tratamiento farmacológico , Medicamentos Herbarios Chinos/administración & dosificación , Animales , Dermatitis Atópica/etiología , Dermatitis Atópica/genética , Dermatitis Atópica/inmunología , Dinitroclorobenceno/efectos adversos , Modelos Animales de Enfermedad , Femenino , Humanos , Japón , Masculino , Ratones , FN-kappa B/genética , FN-kappa B/inmunología , Pomadas/administración & dosificación , Gases em Plasma/administración & dosificación
20.
Int J Mol Sci ; 18(10)2017 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-28991157

RESUMEN

Radiation-induced intestinal toxicity is common among cancer patients after radiotherapy. Endothelial cell dysfunction is believed to be a critical contributor to radiation tissue injury in the intestine. Geranylgeranylacetone (GGA) has been used to treat peptic ulcers and gastritis. However, the protective capacity of GGA against radiation-induced intestinal injury has not been addressed. Therefore, we investigated whether GGA affects intestinal damage in mice and vascular endothelial cell damage in vitro. GGA treatment significantly ameliorated intestinal injury, as evident by intestinal crypt survival, villi length and the subsequently prolonged survival time of irradiated mice. In addition, intestinal microvessels were also significantly preserved in GGA-treated mice. To clarify the effect of GGA on endothelial cell survival, we examined endothelial function by evaluating cell proliferation, tube formation, wound healing, invasion and migration in the presence or absence of GGA after irradiation. Our findings showed that GGA plays a role in maintaining vascular cell function; however, it does not protect against radiation-induced vascular cell death. GGA promoted endothelial function during radiation injury by preventing the loss of VEGF/VEGFR1/eNOS signaling and by down-regulating TNFα expression in endothelial cells. This finding indicates the potential impact of GGA as a therapeutic agent in mitigating radiation-induced intestinal damage.


Asunto(s)
Diterpenos/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Animales , Western Blotting , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA