Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Sci ; 115(3): 989-1000, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38226451

RESUMEN

Chemotherapy combined with debulking surgery is the standard treatment protocol for high-grade serous ovarian carcinoma (HGSOC). Nonetheless, a significant number of patients encounter relapse due to the development of chemotherapy resistance. To better understand and address this resistance, we conducted a comprehensive study investigating the transcriptional alterations at the single-cell resolution in tissue samples from patients with HGSOC, using single-cell RNA sequencing and T-cell receptor sequencing techniques. Our analyses unveiled notable changes in the tumor signatures after chemotherapy, including those associated with epithelial-mesenchymal transition and cell cycle arrest. Within the immune compartment, we observed alterations in the T-cell profiles, characterized by naïve or pre-exhausted populations following chemotherapy. This phenotypic change was further supported by the examination of adjoining T-cell receptor clonotypes in paired longitudinal samples. These findings underscore the profound impact of chemotherapy on reshaping the tumor landscape and the immune microenvironment. This knowledge may provide clues for the development of future therapeutic strategies to combat treatment resistance in HGSOC.


Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Linfocitos T/patología , Receptores de Antígenos de Linfocitos T , Microambiente Tumoral
2.
Br J Cancer ; 130(8): 1388-1401, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424167

RESUMEN

BACKGROUND: Immune checkpoint inhibitors unleash inhibitory signals on T cells conferred by tumors and surrounding stromal cells. Despite the clinical efficacy of checkpoint inhibitors, the lack of target expression and persistence of immunosuppressive cells limit the pervasive effectiveness of the therapy. These limitations may be overcome by alternative approaches that co-stimulate T cells and the immune microenvironment. METHODS: We analyzed single-cell RNA sequencing data from multiple human cancers and a mouse tumor transplant model to discover the pleiotropic expression of the Interleukin 7 (IL-7) receptor on T cells, macrophages, and dendritic cells. RESULTS: Our experiment on the mouse model demonstrated that recombinant IL-7 therapy induces tumor regression, expansion of effector CD8 T cells, and pro-inflammatory activation of macrophages. Moreover, spatial transcriptomic data support immunostimulatory interactions between macrophages and T cells. CONCLUSION: These results indicate that IL-7 therapy induces anti-tumor immunity by activating T cells and pro-inflammatory myeloid cells, which may have diverse therapeutic applicability.


Asunto(s)
Interleucina-7 , Neoplasias , Humanos , Animales , Ratones , Interleucina-7/genética , Interleucina-7/farmacología , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia , Linfocitos T , Análisis de Secuencia de ARN , Microambiente Tumoral/genética , Linfocitos T CD8-positivos
3.
Int J Cancer ; 152(9): 1964-1976, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36650700

RESUMEN

Immune checkpoint inhibitors (ICIs) induce activation and expansion of cytotoxic T cells. To depict a comprehensive immune cell landscape reshaped by the CTLA-4 checkpoint inhibitor, we performed single-cell RNA sequencing in a mouse syngeneic tumor transplant model. After CTLA-4 inhibition, tumor regression was accompanied by massive immune cell expansion, especially in T and B cells. We found that B cells in tumor transplant represented follicular, germinal center and plasma B cells, some of which shared identical B cell receptor clonotypes and possessed tumor reactivity. Furthermore, the posttreatment tumor contained a tertiary lymphoid-like structure with intermingled T and B cells. These data suggest germinal center formation within the tumor mass and in situ differentiation of tumor-specific plasma cells. Taken together, our data provide a panoramic view of the immune microenvironment after CTLA-4 inhibition and suggest a role for tumor-specific B cells in antitumor immunity.


Asunto(s)
Anticuerpos , Neoplasias , Ratones , Animales , Antígeno CTLA-4 , Linfocitos B , Comunicación Celular , Microambiente Tumoral
4.
BMC Cancer ; 22(1): 1186, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36397035

RESUMEN

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) enables the systemic assessment of intratumoral heterogeneity within tumor cell populations and in diverse stromal cells of the tumor microenvironment. Gain of treatment resistance during tumor progression or drug treatment are important subjects of tumor-centric scRNA-seq analyses, which are hampered by scarce tumor cell portions. To guarantee the inclusion of tumor cells in the data analysis, we developed a prescreening strategy for lung adenocarcinoma. METHODS: We obtained candidate genes that were differentially expressed between normal and tumor cells, excluding stromal cells, from the scRNA-seq data. Tumor cell-specific expression of the candidate genes was assessed via real-time reverse transcription-polymerase chain reaction (RT-PCR) using lung cancer cell lines, normal vs. lung cancer tissues, and lymph node biopsy samples with or without metastasis. RESULTS: We found that CEA cell adhesion molecule 5 (CEACAM5) and high mobility group box 3 (HMGB3) were reliable markers for RT-PCR-based prescreening of tumor cells in lung adenocarcinoma. CONCLUSIONS: The prescreening strategy using CEACAM5 and HMGB3 expression facilitates tumor-centric scRNA-seq analyses of lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Perfilación de la Expresión Génica , Neoplasias Pulmonares/patología , Microambiente Tumoral/genética
5.
Circulation ; 142(18): 1736-1751, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883094

RESUMEN

BACKGROUND: Macrophages produce many inflammation-associated molecules, released by matrix metalloproteinases, such as adhesion molecules, and cytokines, as well, which play a crucial role in atherosclerosis. In this context, we investigated the relationship between Ninjurin-1 (Ninj1 [nerve injury-induced protein]), a novel matrix metalloproteinase 9 substrate, expression, and atherosclerosis progression. METHODS: Ninj1 expression and atherosclerosis progression were assessed in atherosclerotic aortic tissue and serum samples from patients with coronary artery disease and healthy controls, and atheroprone apolipoprotein e-deficient (Apoe-/-) and wild-type mice, as well. Apoe-/- mice lacking systemic Ninj1 expression (Ninj1-/-Apoe-/-) were generated to assess the functional effects of Ninj1. Bone marrow transplantation was also used to generate low-density lipoprotein receptor-deficient (Ldlr-/-) mice that lack Ninj1 specifically in bone marrow-derived cells. Mice were fed a Western diet for 5 to 23 weeks, and atherosclerotic lesions were investigated. The anti-inflammatory role of Ninj1 was verified by treating macrophages and mice with the peptides Ninj11-56 (ML56) and Ninj126-37 (PN12), which mimic the soluble form of Ninj1 (sNinj1). RESULTS: Our in vivo results conclusively showed a correlation between Ninj1 expression in aortic macrophages and the extent of human and mouse atherosclerotic lesions. Ninj1-deficient macrophages promoted proinflammatory gene expression by activating mitogen-activated protein kinase and inhibiting the phosphoinositide 3-kinase/Akt signaling pathway. Whole-body and bone marrow-specific Ninj1 deficiencies significantly increased monocyte recruitment and macrophage accumulation in atherosclerotic lesions through elevated macrophage-mediated inflammation. Macrophage Ninj1 was directly cleaved by matrix metalloproteinase 9 to generate a soluble form that exhibited antiatherosclerotic effects, as assessed in vitro and in vivo. Treatment with the sNinj1-mimetic peptides, ML56 and PN12, reduced proinflammatory gene expression in human and mouse classically activated macrophages, thereby attenuating monocyte transendothelial migration. Moreover, continuous administration of mPN12 alleviated atherosclerosis by inhibiting the enhanced monocyte recruitment and inflammation characteristics of this disorder in mice, regardless of the presence of Ninj1. CONCLUSIONS: Ninj1 is a novel matrix metalloproteinase 9 substrate in macrophages, and sNinj1 is a secreted atheroprotective protein that regulates macrophage inflammation and monocyte recruitment in atherosclerosis. Moreover, sNinj1-mediated anti-inflammatory effects are conserved in human macrophages and likely contribute to human atherosclerosis.


Asunto(s)
Antiinflamatorios/farmacología , Aterosclerosis , Moléculas de Adhesión Celular Neuronal , Macrófagos/metabolismo , Factores de Crecimiento Nervioso , Peptidomiméticos/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Moléculas de Adhesión Celular Neuronal/farmacología , Femenino , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Noqueados para ApoE , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/farmacología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética
6.
Genome Res ; 28(8): 1217-1227, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29898899

RESUMEN

Characterization of intratumoral heterogeneity is critical to cancer therapy, as the presence of phenotypically diverse cell populations commonly fuels relapse and resistance to treatment. Although genetic variation is a well-studied source of intratumoral heterogeneity, the functional impact of most genetic alterations remains unclear. Even less understood is the relative importance of other factors influencing heterogeneity, such as epigenetic state or tumor microenvironment. To investigate the relationship between genetic and transcriptional heterogeneity in a context of cancer progression, we devised a computational approach called HoneyBADGER to identify copy number variation and loss of heterozygosity in individual cells from single-cell RNA-sequencing data. By integrating allele and normalized expression information, HoneyBADGER is able to identify and infer the presence of subclone-specific alterations in individual cells and reconstruct the underlying subclonal architecture. By examining several tumor types, we show that HoneyBADGER is effective at identifying deletions, amplifications, and copy-neutral loss-of-heterozygosity events and is capable of robustly identifying subclonal focal alterations as small as 10 megabases. We further apply HoneyBADGER to analyze single cells from a progressive multiple myeloma patient to identify major genetic subclones that exhibit distinct transcriptional signatures relevant to cancer progression. Other prominent transcriptional subpopulations within these tumors did not line up with the genetic subclonal structure and were likely driven by alternative, nonclonal mechanisms. These results highlight the need for integrative analysis to understand the molecular and phenotypic heterogeneity in cancer.


Asunto(s)
Heterogeneidad Genética , Mieloma Múltiple/genética , Neoplasias/genética , Transcripción Genética , Alelos , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mieloma Múltiple/patología , Mutación , Neoplasias/patología , Polimorfismo de Nucleótido Simple , Análisis de la Célula Individual/métodos
7.
Genome Res ; 28(1): 75-87, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29208629

RESUMEN

Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level.


Asunto(s)
ADN de Neoplasias , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias , ARN Neoplásico , ADN de Neoplasias/genética , ADN de Neoplasias/aislamiento & purificación , Humanos , Células MCF-7 , Neoplasias/genética , Neoplasias/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/aislamiento & purificación
8.
Adv Exp Med Biol ; 1187: 205-214, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33983580

RESUMEN

Single cell genomics became a universal and powerful tool to study cellular diversity at genomic levels in normal and disease conditions. Cancer is a disease of genomic instability which instigates clonal evolution and intra-tumoral heterogeneity. Cancer progression also accompanies gross alterations in the microenvironment, and the stromal or immune cell types comprising the tumor microenvironment can be explored by single cell genomics. So far, breast cancer has been analyzed by single cell genomic tools for the clonal evolution, inter- and intra-tumoral heterogeneity in molecular signatures, and tumor microenvironment. We will briefly go over those studies and discuss the potential application of single cell genomics for the diagnostics and management of cancer.


Asunto(s)
Neoplasias de la Mama , Genómica , Evolución Clonal , Heterogeneidad Genética , Inestabilidad Genómica , Humanos , Microambiente Tumoral/genética
9.
Arterioscler Thromb Vasc Biol ; 35(7): 1670-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26023078

RESUMEN

OBJECTIVE--: Moyamoya disease (MMD) is a common cause of childhood stroke, in which the abnormal function of the endothelial colony-forming cell (ECFC) plays a key role in the pathogenesis of the disease. This study was designed to identify genes involved in MMD pathogenesis using gene expression profiling and to understand the defective function of MMD ECFCs. APPROACH AND RESULTS--: We compared gene expression profiles of ECFCs isolated from patients with MMD and normal controls. Among the differentially expressed genes, we selected a gene with the most downregulated expression, retinaldehyde dehydrogenase 2 (RALDH2). The activity of RALDH2 in MMD ECFCs was assessed by in vitro tube formation assay and in vivo Matrigel plug assay in the presence of all-trans retinoic acid. The transcriptional control of RALDH2 was tested using ChIP assays on acetyl-histone H3. In the results, MMD ECFCs inefficiently formed capillary tubes in vitro and capillaries in vivo, a defect restored by all-trans retinoic acid treatment. Knockdown of RALDH2 mRNA in normal ECFCs also induced decreased activity of capillary formation in vitro. The decreased level of RALDH2 mRNA in MMD ECFCs was attributed to defective acetyl-histone H3 binding to the promoter region. CONCLUSIONS--: From these results, we conclude that the expression of RALDH2 was epigenetically suppressed in ECFCs from patients with MMD, which may play a key role in their functional impairment.


Asunto(s)
Células Endoteliales/enzimología , Enfermedad de Moyamoya/enzimología , Enfermedad de Moyamoya/genética , Retinal-Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Epigénesis Genética , Perfilación de la Expresión Génica , Humanos , ARN Mensajero/metabolismo , Tretinoina/metabolismo
10.
BMC Genomics ; 16: 515, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26155838

RESUMEN

BACKGROUND: Identification of the causative genes of retinitis pigmentosa (RP) is important for the clinical care of patients with RP. However, a comprehensive genetic study has not been performed in Korean RP patients. Moreover, the genetic heterogeneity found in sensorineural genetic disorders makes identification of pathogenic mutations challenging. Therefore, high throughput genetic testing using massively parallel sequencing is needed. RESULTS: Sixty-two Korean patients with nonsyndromic RP (46 patients from 18 families and 16 simplex cases) who consented to molecular genetic testing were recruited in this study and targeted exome sequencing was applied on 53 RP-related genes. Causal variants were characterised by selecting exonic and splicing variants, selecting variants with low allele frequency (below 1 %), and discarding the remaining variants with quality below 20. The variants were additionally confirmed by an inheritance pattern and cosegregation test of the families, and the rest of the variants were prioritised using in-silico prediction tools. Finally, causal variants were detected from 10 of 18 familial cases (55.5 %) and 7 of 16 simplex cases (43.7 %) in total. Novel variants were detected in 13 of 20 (65 %) candidate variants. Compound heterozygous variants were found in four of 7 simplex cases. CONCLUSION: Panel-based targeted re-sequencing can be used as an effective molecular diagnostic tool for RP.


Asunto(s)
Pueblo Asiatico/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Retinitis Pigmentosa/diagnóstico , Análisis de Secuencia de ADN/métodos , Exoma , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Humanos , Masculino , Linaje , República de Corea , Retinitis Pigmentosa/genética , Análisis de Secuencia de ADN/economía
11.
BMB Rep ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044458

RESUMEN

To understand the cellular and molecular dynamics in the early stages of lung cancer, we explored a mouse model of orthotopic tumor transplant created from the Lewis Lung Carcinoma (LLC) cell line. Employing single-cell RNA sequencing, we analyzed the cellular landscape during tumor engraftment, focusing particularly on LLC cells harboring the Kras G12C mutation. This allowed us to identify LLC tumor cells via the detection of mutant Kras transcripts and observe elevated levels of Myc and mesenchymal gene expression. Moreover, our study revealed significant alterations in the lung microenvironment, including the activation of tissue remodeling genes in a fibroblast and the downregulation of MHC class II genes in myeloid subsets. Additionally, T/NK cell subsets displayed more regulatory phenotypes, coupled with reduced proliferation in CD8+ T cells. Collectively, these findings enhance our understanding of lung cancer progression, particularly in a tumor microenvironment with low immunogenicity.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38934039

RESUMEN

Background: The aim of this study is to investigate the specific pathway involved in human leukocyte antigen (HLA) sensitization using single-cell RNA-sequencing analysis and an allo-sensitized mouse model developed with an HLA.A2 transgenic mouse. Methods: For sensitization, wild-type C57BL/6 mouse received two skin grafts from C57BL/6-Tg(HLA-A2.1)1Enge/J mouse (allogeneic mouse, ALLO). For syngeneic control (SYN), skin grafts were transferred from C57BL/6 to C57BL/6. We performed single-cell RNA-sequencing analysis on splenocytes isolated from ALLO and SYN and compared the gene expression between them. Results: We generated 9,190 and 8,890 single-cell transcriptomes from ALLO and SYN, respectively. Five major cell types (B cells, T cells, natural killer cells, macrophages, and neutrophils) and their transcriptome data were annotated according to the representative differentially expressed genes of each cell cluster. The percentage of B cells was higher in ALLO than it was in SYN. Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the highly expressed genes in the B cells from ALLO were mainly associated with antigen processing and presentation pathways, allograft rejection, and the Th17 cell differentiation pathway. Upregulated genes in the T cells of ALLO were involved in the interleukin (IL)-17 signaling pathway. The ratio of Th17 cluster and Treg cluster was increased in the ALLO. On flow cytometry, the percentage of Th17 (IL-17+/CD4+ T) cells was higher and regulatory T cells (FOXP3+/CD4+ T) was lower in the ALLO compared to those in the SYN. Conclusion: Our results indicate that not only the B cell lineage but also the Th17 cells and their cytokine (IL-17) are involved in the sensitization to HLA.

13.
PLoS One ; 19(8): e0301562, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39190696

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has emerged as a versatile tool in biology, enabling comprehensive genomic-level characterization of individual cells. Currently, most scRNA-seq methods generate barcoded cDNAs by capturing the polyA tails of mRNAs, which exclude many non-coding RNAs (ncRNAs), especially those transcribed by RNA polymerase III (Pol III). Although previously thought to be expressed constitutively, Pol III-transcribed ncRNAs are expressed variably in healthy and disease states and play important roles therein, necessitating their profiling at the single-cell level. In this study, we developed a measurement protocol for nc886 as a model case and initial step for scRNA-seq for Pol III-transcribed ncRNAs. Specifically, we spiked in an oligo-tagged nc886-specific primer during the polyA tail capture process for the 5'scRNA-seq. We then produced sequencing libraries for standard 5' gene expression and oligo-tagged nc886 separately, to accommodate different cDNA sizes and ensure undisturbed transcriptome analysis. We applied this protocol in three cell lines that express high, low, and zero levels of nc886. Our results show that the identification of oligo tags exhibited limited target specificity, and sequencing reads of nc886 enabled the correction of non-specific priming. These findings suggest that gene-specific primers (GSPs) can be employed to capture RNAs lacking a polyA tail, with subsequent sequence verification ensuring accurate gene expression counting. Moreover, we embarked on an analysis of differentially expressed genes in cell line sub-clusters with differential nc886 expression, demonstrating variations in gene expression phenotypes. Collectively, the primer spike-in strategy allows combined analysis of ncRNAs and gene expression phenotype.


Asunto(s)
ARN Polimerasa III , ARN no Traducido , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Humanos , ARN no Traducido/genética , Análisis de Secuencia de ARN/métodos , Transcripción Genética , Cartilla de ADN/genética , Perfilación de la Expresión Génica/métodos
14.
BMB Rep ; 57(2): 110-115, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37605617

RESUMEN

Alterations in DNA methylation play an important pathophysiological role in the development and progression of colorectal cancer. We comprehensively profiled DNA methylation alterations in 165 Korean patients with colorectal cancer (CRC), and conducted an in-depth investigation of cancer-specific methylation patterns. Our analysis of the tumor samples revealed a significant presence of hypomethylated probes, primarily within the gene body regions; few hypermethylated sites were observed, which were mostly enriched in promoter-like and CpG island regions. The CpG Island Methylator PhenotypeHigh (CIMP-H) exhibited notable enrichment of microsatellite instability-high (MSI-H). Additionally, our findings indicated a significant correlation between methylation of the MLH1 gene and MSI-H status. Furthermore, we found that the CIMP-H had a higher tendency to affect the right-side of the colon tissues and was slightly more prevalent among older patients. Through our methylome profile analysis, we successfully verified the thylation patterns and clinical characteristics of Korean patients with CRC. This valuable dataset lays a strong foundation for exploring novel molecular insights and potential therapeutic targets for the treatment of CRC. [BMB Reports 2024; 57(2): 110-115].


Asunto(s)
Neoplasias Colorrectales , Metilación de ADN , Humanos , Metilación de ADN/genética , Inestabilidad de Microsatélites , Mutación , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , República de Corea , Islas de CpG/genética , Fenotipo
15.
J Pathol Transl Med ; 57(1): 52-59, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36623812

RESUMEN

Single-cell RNA sequencing has become a powerful and essential tool for delineating cellular diversity in normal tissues and alterations in disease states. For certain cell types and conditions, there are difficulties in isolating intact cells for transcriptome profiling due to their fragility, large size, tight interconnections, and other factors. Single-nucleus RNA sequencing (snRNA-seq) is an alternative or complementary approach for cells that are difficult to isolate. In this review, we will provide an overview of the experimental and analysis steps of snRNA-seq to understand the methods and characteristics of general and tissue-specific snRNA-seq data. Knowing the advantages and limitations of snRNA-seq will increase its use and improve the biological interpretation of the data generated using this technique.

16.
Nat Biotechnol ; 41(11): 1593-1605, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36797491

RESUMEN

Identification of optimal target antigens that distinguish cancer cells from normal surrounding tissue cells remains a key challenge in chimeric antigen receptor (CAR) cell therapy for tumors with intratumoral heterogeneity. In this study, we dissected tissue complexity to the level of individual cells through the construction of a single-cell expression atlas that integrates ~1.4 million tumor, tumor-infiltrating normal and reference normal cells from 412 tumors and 12 normal organs. We used a two-step screening method using random forest and convolutional neural networks to select gene pairs that contribute most to discrimination between individual malignant and normal cells. Tumor coverage and specificity are evaluated for the AND, OR and NOT logic gates based on the combinatorial expression pattern of the pairing genes across individual single cells. Single-cell transcriptome-coupled epitope profiling validates the AND, OR and NOT switch targets identified in ovarian cancer and colorectal cancer.


Asunto(s)
Neoplasias Ováricas , Linfocitos T , Femenino , Humanos , Inmunoterapia Adoptiva/métodos , Antígenos de Neoplasias
17.
J Hematol Oncol ; 15(1): 82, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710446

RESUMEN

Much higher risk of cancer has been found in diabetes patients. Insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) have been extensively studied in both breast cancer and diabetes therapies. Interestingly, a recent study proposed that IR/IGF1R ratio is an important factor for breast cancer prognosis. Women with higher IR/IGF1R ratio showed poor breast cancer prognosis as well as hyperinsulinemia. Here, we propose a novel mechanism that oncogenic protein TRIP-Br1 renders breast cancer cells and insulin deficient mice to have higher IR/IGF1R ratio by positively and negatively regulating IR and IGF1R expression at the protein level, respectively. TRIP-Br1 repressed IR degradation by suppressing its ubiquitination. Meanwhile, TRIP-Br1 directly interacts with both IGF1R and NEDD4-1 E3 ubiquitin ligase, in which TRIP-Br1/NEDD4-1 degrades IGF1R via ubiquitin/proteasome system. TRIP-Br1-mediated higher IR/IGF1R ratio enhanced the proliferation and survival of breast cancer cells. In conclusion, current study may provide an important information in the regulatory mechanism of how breast cancer cells have acquired higher IR/IGF1R ratio.


Asunto(s)
Neoplasias de la Mama , Factor I del Crecimiento Similar a la Insulina , Animales , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Pronóstico , Receptor IGF Tipo 1 , Receptor de Insulina , Ubiquitina
18.
Nat Commun ; 13(1): 6647, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333342

RESUMEN

Endothelial nitric oxide synthase (eNOS) decreases following inflammatory stimulation. As a master regulator of endothelial homeostasis, maintaining optimal eNOS levels is important during cardiovascular events. However, little is known regarding the mechanism of eNOS protection. In this study, we demonstrate a regulatory role for endothelial expression of 2'-5' oligoadenylate synthetase-like 1 (OASL1) in maintaining eNOS mRNA stability during athero-prone conditions and consider its clinical implications. A lack of endothelial Oasl1 accelerated plaque progression, which was preceded by endothelial dysfunction, elevated vascular inflammation, and decreased NO bioavailability following impaired eNOS expression. Mechanistically, knockdown of PI3K/Akt signaling-dependent OASL expression increased Erk1/2 and NF-κB activation and decreased NOS3 (gene name for eNOS) mRNA expression through upregulation of the negative regulatory, miR-584, whereas a miR-584 inhibitor rescued the effects of OASL knockdown. These results suggest that OASL1/OASL regulates endothelial biology by protecting NOS3 mRNA and targeting miR-584 represents a rational therapeutic strategy for eNOS maintenance in vascular disease.


Asunto(s)
Aterosclerosis , MicroARNs , Humanos , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ligasas/metabolismo , Células Endoteliales/metabolismo , MicroARNs/genética , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , ARN Mensajero/metabolismo , Estabilidad del ARN , Óxido Nítrico/metabolismo , Células Cultivadas
19.
Nat Commun ; 13(1): 5461, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-36115863

RESUMEN

Valvular inflammation triggered by hyperlipidemia has been considered as an important initial process of aortic valve disease; however, cellular and molecular evidence remains unclear. Here, we assess the relationship between plasma lipids and valvular inflammation, and identify association of low-density lipoprotein with increased valvular lipid and macrophage accumulation. Single-cell RNA sequencing analysis reveals the cellular heterogeneity of leukocytes, valvular interstitial cells, and valvular endothelial cells, and their phenotypic changes during hyperlipidemia leading to recruitment of monocyte-derived MHC-IIhi macrophages. Interestingly, we find activated PPARγ pathway in Cd36+ valvular endothelial cells increased in hyperlipidemic mice, and the conservation of PPARγ activation in non-calcified human aortic valves. While the PPARγ inhibition promotes inflammation, PPARγ activation using pioglitazone reduces valvular inflammation in hyperlipidemic mice. These results show that low-density lipoprotein is the main lipoprotein accumulated in the aortic valve during hyperlipidemia, leading to early-stage aortic valve disease, and PPARγ activation protects the aortic valve against inflammation.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Hiperlipidemias , Animales , Válvula Aórtica/metabolismo , Calcinosis/genética , Células Cultivadas , Células Endoteliales/metabolismo , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Inmunomodulación , Inflamación/genética , Inflamación/metabolismo , Lipoproteínas LDL/metabolismo , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Pioglitazona/farmacología , Transcriptoma
20.
Dev Biol ; 345(1): 34-48, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20553902

RESUMEN

Polo-like kinase 1 (Plk1) is central to cell division. Here, we report that Plk1 is critical for mitosis in the embryonic development of zebrafish. Using a combination of several cell biology tools, including single-cell live imaging applied to whole embryos, we show that Plk1 is essential for progression into mitosis during embryonic development. Plk1 morphant cells displayed mitotic infidelity, such as abnormal centrosomes, irregular spindle assembly, hypercondensed chromosomes, and a failure of chromosome arm separation. Consequently, depletion of Plk1 resulted in mitotic arrest and finally death by 6days post-fertilization. In comparison, Plk2 or Plk3 morphant embryos did not display any significant abnormalities. Treatment of embryos with the Plk1 inhibitor, BI 2536, caused a block in mitosis, which was more severe when used to treat plk1 morphants. Finally, using an assay to rescue the Plk1 morphant phenotype, we found that the kinase domain and PBD domains are both necessary for Plk1 function in zebrafish development. Our studies demonstrate that Plk1 is required for embryonic proliferation because its activity is crucial for mitotic integrity. Furthermore, our study suggests that zebrafish will be an efficient and economical in vivo system for the validation of anti-mitotic drugs.


Asunto(s)
Proteínas de Ciclo Celular/genética , Embrión no Mamífero/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Apoptosis , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Segregación Cromosómica/efectos de los fármacos , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/genética , Histonas/metabolismo , Hibridación in Situ , Cinética , Microscopía por Video/métodos , Mitosis/efectos de los fármacos , Datos de Secuencia Molecular , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Pteridinas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA