RESUMEN
AbstractThis essay explores shifting scientific understandings of fish and the evolution of fisheries science, and it grapples with colonialism as a system of power. We trace the rise of fisheries science to a time when Western nation-states were industrializing fishing fleets and competing for access to distant fishing grounds. A theory of fishing called "maximum sustainable yield" (MSY) that understands fish species in aggregate was espoused. Although alternatives to MSY have been developed, decision-making continues to be informed by statistical models developed within fisheries science. A challenge for structured management systems now rests in attending to different systems of knowledge and addressing local objectives, values, and circumstances. To deepen and illustrate key points, we examine Pacific herring (Clupea pallasii) and the expansion of commercial herring fisheries and state-led management in British Columbia, Canada. A feedback between colonialism and fisheries science is evident: colonialism generated the initial conditions for expansion and has been reinforced through the implementation of approaches and tools from fisheries science that define and quantify conservation in particular ways. Some features may be unique to the herring illustration, but important aspects of the feedback are more broadly generalizable. We propose three interconnected goals: (a) transform the siloed institutions and practices of Western science, (b) reimagine and rebuild pathways between information (including diverse values and perspectives) and decision-making, and (c) devolve governance authority and broaden governance processes such that multiple ways of knowing share equal footing.
Asunto(s)
Colonialismo , Explotaciones Pesqueras , Animales , Colombia Británica , Conservación de los Recursos Naturales , Retroalimentación , Peces , Humanos , Modelos EstadísticosRESUMEN
Size, growth, and density have been studied for North American Pacific coast sea urchins Strongylocentrotus purpuratus, S. droebachiensis, S. polyacanthus, Mesocentrotus (Strongylocentrotus) franciscanus, Lytechinus pictus, Centrostephanus coronatus, and Arbacia stellata by various workers at diverse sites and for varying lengths of time from 1956 to present. Numerous peer-reviewed publications have used some of these data but some data have appeared only in graduate theses or the gray literature. There also are data that have never appeared outside original data sheets. Motivation for studies has included fisheries management and environmental monitoring of sewer and power plant outfalls as well as changes associated with disease epidemics. Studies also have focused on kelp restoration, community effects of sea otters, basic sea urchin biology, and monitoring. The data sets presented here are a historical record of size, density, and growth for a common group of marine invertebrates in intertidal and nearshore environments that can be used to test hypotheses concerning future changes associated with fisheries practices, shifts of predator distributions, climate and ecosystem changes, and ocean acidification along the Pacific Coast of North America and islands of the north Pacific. No copyright restrictions apply. Please credit this paper when using the data.
RESUMEN
With climate, biodiversity and inequity crises squarely upon us, never has there been a more pressing time to rethink how we conceptualize, understand and manage our relationship with Earth's biodiversity. Here, we describe governance principles of 17 Indigenous Nations from the Northwest Coast of North America used to understand and steward relationships among all components of nature, including humans. We then chart the colonial origins of biodiversity science and use the complex case of sea otter recovery to illuminate how ancestral governance principles can be mobilized to characterize, manage and restore biodiversity in more inclusive, integrative and equitable ways. To enhance environmental sustainability, resilience and social justice amid today's crises, we need to broaden who benefits from and participates in the sciences of biodiversity by expanding the values and methodologies that shape such initiatives. In practice, biodiversity conservation and natural resource management need to shift from centralized, siloed approaches to those that can accommodate plurality in values, objectives, governance systems, legal traditions and ways of knowing. In doing so, developing solutions to our planetary crises becomes a shared responsibility. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Asunto(s)
Biodiversidad , Justicia Social , Humanos , América del Norte , Clima , Conservación de los Recursos Naturales , EcosistemaRESUMEN
Kelp forest ecosystems and their associated ecosystem services are declining around the world. In response, marine managers are working to restore and counteract these declines. Kelp restoration first started in the 1700s in Japan and since then has spread across the globe. Restoration efforts, however, have been largely disconnected, with varying methodologies trialled by different actors in different countries. Moreover, a small subset of these efforts are 'afforestation', which focuses on creating new kelp habitat, as opposed to restoring kelp where it previously existed. To distil lessons learned over the last 300 years of kelp restoration, we review the history of kelp restoration (including afforestation) around the world and synthesise the results of 259 documented restoration attempts spanning from 1957 to 2020, across 16 countries, five languages, and multiple user groups. Our results show that kelp restoration projects have increased in frequency, have employed 10 different methodologies and targeted 17 different kelp genera. Of these projects, the majority have been led by academics (62%), have been conducted at sizes of less than 1 ha (80%) and took place over time spans of less than 2 years. We show that projects are most successful when they are located near existing kelp forests. Further, disturbance events such as sea-urchin grazing are identified as regular causes of project failure. Costs for restoration are historically high, averaging hundreds of thousands of dollars per hectare, therefore we explore avenues to reduce these costs and suggest financial and legal pathways for scaling up future restoration efforts. One key suggestion is the creation of a living database which serves as a platform for recording restoration projects, showcasing and/or re-analysing existing data, and providing updated information. Our work establishes the groundwork to provide adaptive and relevant recommendations on best practices for kelp restoration projects today and into the future.