Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(29): 34931-34940, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37458421

RESUMEN

Sulfide-based all-solid-state batteries (ASSBs) have emerged as promising candidates for next-generation energy storage systems owing to their superior safety and energy density. A conductive agent is necessarily added in the cathode composite of ASSBs to facilitate electron transport therein, but it causes the decomposition of the solid electrolyte and ultimately the shortening of lifetime. To resolve this dilemmatic situation, herein, we report a rationally designed solution-processible coating of zinc oxide (ZnO) onto vapor-grown carbon fiber as a conductive agent to reduce the contact between the carbon additive and the solid electrolyte and still maintain electron pathways to the active material. ASSBs with the carbon additive with an optimal coating of ZnO have markedly improved cycling performance and rate capability compared to those with the bare conductive agent, which can be attributed to hindering the decomposition of the solid electrolytes. The results highlight the usefulness of controlling the interparticle contacts in the composite cathodes in addressing the challenging interfacial degradation of sulfide-based ASSBs and improving their key electrochemical properties.

2.
Adv Mater ; 34(40): e2203580, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35953451

RESUMEN

All-solid-state batteries (ASSBs) that employ anode-less electrodes have drawn attention from across the battery community because they offer competitive energy densities and a markedly improved cycle life. Nevertheless, the composite matrices of anode-less electrodes impose a substantial barrier for lithium-ion diffusion and inhibit operation at room temperature. To overcome this drawback, here, the conversion reaction of metal fluorides is exploited because metallic nanodomains formed during this reaction induce an alloying reaction with lithium ions for uniform and sustainable lithium (de)plating. Lithium fluoride (LiF), another product of the conversion reaction, prevents the agglomeration of the metallic nanodomains and also protects the electrode from fatal lithium dendrite growth. A systematic analysis identifies silver (I) fluoride (AgF) as the most suitable metal fluoride because the silver nanodomains can accommodate the solid-solution mechanism with a low nucleation overpotential. AgF-based full cells attain reliable cycling at 25 °C even with an exceptionally high areal capacity of 9.7 mAh cm-2 (areal loading of LiNi0.8 Co0.1 Mn0.1 O2  = 50 mg cm-2 ). These results offer useful insights into designing materials for anode-less electrodes for sulfide-based ASSBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA