Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.246
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(7): 1801-1818.e20, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38471500

RESUMEN

The repertoire of modifications to bile acids and related steroidal lipids by host and microbial metabolism remains incompletely characterized. To address this knowledge gap, we created a reusable resource of tandem mass spectrometry (MS/MS) spectra by filtering 1.2 billion publicly available MS/MS spectra for bile-acid-selective ion patterns. Thousands of modifications are distributed throughout animal and human bodies as well as microbial cultures. We employed this MS/MS library to identify polyamine bile amidates, prevalent in carnivores. They are present in humans, and their levels alter with a diet change from a Mediterranean to a typical American diet. This work highlights the existence of many more bile acid modifications than previously recognized and the value of leveraging public large-scale untargeted metabolomics data to discover metabolites. The availability of a modification-centric bile acid MS/MS library will inform future studies investigating bile acid roles in health and disease.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Metabolómica , Espectrometría de Masas en Tándem , Animales , Humanos , Ácidos y Sales Biliares/química , Metabolómica/métodos , Poliaminas , Espectrometría de Masas en Tándem/métodos , Bases de Datos de Compuestos Químicos
2.
Annu Rev Biochem ; 90: 165-191, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33792375

RESUMEN

Double-strand DNA breaks (DSBs) are the most lethal type of DNA damage, making DSB repair critical for cell survival. However, some DSB repair pathways are mutagenic and promote genome rearrangements, leading to genome destabilization. One such pathway is break-induced replication (BIR), which repairs primarily one-ended DSBs, similar to those formed by collapsed replication forks or telomere erosion. BIR is initiated by the invasion of a broken DNA end into a homologous template, synthesizes new DNA within the context of a migrating bubble, and is associated with conservative inheritance of new genetic material. This mode of synthesis is responsible for a high level of genetic instability associated with BIR. Eukaryotic BIR was initially investigated in yeast, but now it is also actively studied in mammalian systems. Additionally, a significant breakthrough has been made regarding the role of microhomology-mediated BIR in the formation of complex genomic rearrangements that underly various human pathologies.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Mamíferos/genética , Homeostasis del Telómero/genética , Animales , Reparación del ADN por Unión de Extremidades , Humanos , Mutación , Levaduras/genética
3.
Plant Cell ; 35(1): 24-66, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36222573

RESUMEN

Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.


Asunto(s)
Cambio Climático , Ecosistema , Humanos , Productos Agrícolas , Carbono , Sequías
4.
J Biol Chem ; : 107559, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002679

RESUMEN

Many anaerobic microorganisms use the bifunctional aldehyde and alcohol dehydrogenase, AdhE, to produce ethanol. One such organism is Clostridium thermocellum, which is of interest for cellulosic biofuel production. In the course of engineering this organism for improved ethanol tolerance and production, we observed that AdhE was a frequent target of mutations. Here, we characterized those mutations to understand their effects on enzymatic activity, as well ethanol tolerance and product formation in the organism. We found that there is a strong correlation between NADH-linked alcohol dehydrogenase (ADH) activity and ethanol tolerance. Mutations that decrease NADH-linked ADH activity increase ethanol tolerance; correspondingly, mutations that increase NADH-linked ADH activity decrease ethanol tolerance. We also found that the magnitude of ADH activity did not play a significant role in determining ethanol titer. Increasing ADH activity had no effect on ethanol titer. Reducing ADH activity had indeterminate effects on ethanol titer, sometimes increasing and sometimes decreasing it. Finally, this study shows that the cofactor specificity of ADH activity was found to be the primary factor affecting ethanol yield. We expect that these results will inform efforts to use AdhE enzymes in metabolic engineering approaches.

5.
PLoS Pathog ; 19(3): e1011269, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36996244

RESUMEN

Trypanosoma brucei spp. develop into mammalian-infectious metacyclic trypomastigotes inside tsetse salivary glands. Besides acquiring a variant surface glycoprotein (VSG) coat, little is known about the metacyclic expression of invariant surface antigens. Proteomic analyses of saliva from T. brucei-infected tsetse flies identified, in addition to VSG and Brucei Alanine-Rich Protein (BARP) peptides, a family of glycosylphosphatidylinositol (GPI)-anchored surface proteins herein named as Metacyclic Invariant Surface Proteins (MISP) because of its predominant expression on the surface of metacyclic trypomastigotes. The MISP family is encoded by five paralog genes with >80% protein identity, which are exclusively expressed by salivary gland stages of the parasite and peak in metacyclic stage, as shown by confocal microscopy and immuno-high resolution scanning electron microscopy. Crystallographic analysis of a MISP isoform (MISP360) and a high confidence model of BARP revealed a triple helical bundle architecture commonly found in other trypanosome surface proteins. Molecular modelling combined with live fluorescent microscopy suggests that MISP N-termini are potentially extended above the metacyclic VSG coat, and thus could be tested as a transmission-blocking vaccine target. However, vaccination with recombinant MISP360 isoform did not protect mice against a T. brucei infectious tsetse bite. Lastly, both CRISPR-Cas9-driven knock out and RNAi knock down of all MISP paralogues suggest they are not essential for parasite development in the tsetse vector. We suggest MISP may be relevant during trypanosome transmission or establishment in the vertebrate's skin.


Asunto(s)
Parásitos , Trypanosoma brucei brucei , Trypanosoma , Animales , Ratones , Trypanosoma brucei brucei/genética , Proteínas de la Membrana , Alanina , Proteómica , Glándulas Salivales/parasitología , Mamíferos , Glicoproteínas de Membrana
6.
Proc Natl Acad Sci U S A ; 119(14): e2116708119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35357971

RESUMEN

Iron surface determinant B (IsdB) is a hemoglobin (Hb) receptor essential for hemic iron acquisition by Staphylococcus aureus. Heme transfer to IsdB is possible from oxidized Hb (metHb), but inefficient from Hb either bound to oxygen (oxyHb) or bound to carbon monoxide (HbCO), and encompasses a sequence of structural events that are currently poorly understood. By single-particle cryo-electron microscopy, we determined the structure of two IsdB:Hb complexes, representing key species along the heme extraction pathway. The IsdB:HbCO structure, at 2.9-Å resolution, provides a snapshot of the preextraction complex. In this early stage of IsdB:Hb interaction, the hemophore binds to the ß-subunits of the Hb tetramer, exploiting a folding-upon-binding mechanism that is likely triggered by a cis/trans isomerization of Pro173. Binding of IsdB to α-subunits occurs upon dissociation of the Hb tetramer into α/ß dimers. The structure of the IsdB:metHb complex reveals the final step of the extraction process, where heme transfer to IsdB is completed. The stability of the complex, both before and after heme transfer from Hb to IsdB, is influenced by isomerization of Pro173. These results greatly enhance current understanding of structural and dynamic aspects of the heme extraction mechanism by IsdB and provide insight into the interactions that stabilize the complex before the heme transfer event. This information will support future efforts to identify inhibitors of heme acquisition by S. aureus by interfering with IsdB:Hb complex formation.


Asunto(s)
Proteínas de Transporte de Catión , Hemo , Hemoglobinas , Proteínas de Transporte de Catión/química , Microscopía por Crioelectrón , Hemo/química , Hemoglobinas/química , Humanos , Hierro/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(42): e2205326119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36215472

RESUMEN

The Paleocene-Eocene Thermal Maximum (PETM; 56 Ma) is one of our best geological analogs for understanding climate dynamics in a "greenhouse" world. However, proxy data representing the event are only available from select marine and terrestrial sedimentary sequences that are unevenly distributed across Earth's surface, limiting our view of the spatial patterns of climate change. Here, we use paleoclimate data assimilation (DA) to combine climate model and proxy information and create a spatially complete reconstruction of the PETM and the climate state that precedes it ("PETM-DA"). Our data-constrained results support strong polar amplification, which in the absence of an extensive cryosphere, is related to temperature feedbacks and loss of seasonal snow on land. The response of the hydrological cycle to PETM warming consists of a narrowing of the Intertropical Convergence Zone, off-equatorial drying, and an intensification of seasonal monsoons and winter storm tracks. Many of these features are also seen in simulations of future climate change under increasing anthropogenic emissions. Since the PETM-DA yields a spatially complete estimate of surface air temperature, it yields a rigorous estimate of global mean temperature change (5.6 ∘C; 5.4 ∘C to 5.9 ∘C, 95% CI) that can be used to calculate equilibrium climate sensitivity (ECS). We find that PETM ECS was 6.5 ∘C (5.7 ∘C to 7.4 ∘C, 95% CI), which is much higher than the present-day range. This supports the view that climate sensitivity increases substantially when greenhouse gas concentrations are high.


Asunto(s)
Cambio Climático , Gases de Efecto Invernadero , Temperatura
8.
Osteoporos Int ; 35(1): 181-187, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37700010

RESUMEN

COVID-19 infection has resulted in significant morbidity and mortality globally, especially among older adults. Repurposed drugs have demonstrated activity in respiratory illnesses, including nitrogen-containing bisphosphonates. In this retrospective longitudinal study at 4 academic medical centers, we show no benefit of nitrogen-containing bisphosphonates regarding ICU admission, ventilator use, and mortality among older adults with COVID-19 infection. We specifically evaluated the intravenous bisphosphonate zoledronic acid and found no difference compared to oral bisphosphonates. BACKGROUND: Widely used in osteoporosis treatment, nitrogen-containing bisphosphonates (N-BP) have been associated with reduced mortality and morbidity among older adults. Based on prior studies, we hypothesized that prior treatment with N-BP might reduce intensive care unit (ICU) admission, ventilator use, and death among older adults diagnosed with COVID-19. METHODS: This retrospective analysis of the PCORnet Common Data Model across 4 academic medical centers through 1 September 2021 identified individuals age >50 years with a diagnosis of COVID-19. The composite outcome included ICU admission, ventilator use, or death within 15, 30, and 180 days of COVID-19 diagnosis. Use of N-BP was defined as a prescription within 3 years prior. ICU admission and ventilator use were determined using administrative codes. Death included both in-hospital and out-of-hospital events. Patients treated with N-BP were matched 1:1 by propensity score to patients without prior N-BP use. Secondary analysis compared outcomes among those prescribed zoledronic acid (ZOL) to those prescribed oral N-BPs. RESULTS: Of 76,223 COVID-19 patients identified, 1,853 were previously prescribed N-BP, among whom 559 were prescribed ZOL. After propensity score matching, there were no significant differences in the composite outcome at 15 days (HR 1.22, 95% CI: 0.89-1.67), 30 days (HR 1.24, 95% CI: 0.93-1.66), or 180 days (HR 1.17, 95% CI: 0.93-1.48), comparing those prescribed and not prescribed N-BP. Compared to those prescribed oral N-BP, there were no significant differences in outcomes among those prescribed ZOL. CONCLUSION: Among older COVID-19 patients, prior exposure to N-BP including ZOL was not associated with a reduction in ICU admission, ventilator use, or death.


Asunto(s)
Conservadores de la Densidad Ósea , COVID-19 , Humanos , Anciano , Persona de Mediana Edad , Difosfonatos/uso terapéutico , Ácido Zoledrónico/uso terapéutico , Conservadores de la Densidad Ósea/uso terapéutico , Estudios Retrospectivos , Prueba de COVID-19 , Estudios Longitudinales
9.
Nat Chem Biol ; 18(8): 850-858, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35654846

RESUMEN

The growing appreciation of immune cell-cell interactions within disease environments has led to extensive efforts to develop immunotherapies. However, characterizing complex cell-cell interfaces in high resolution remains challenging. Thus, technologies leveraging therapeutic-based modalities to profile intercellular environments offer opportunities to study cell-cell interactions with molecular-level insight. We introduce photocatalytic cell tagging (PhoTag) for interrogating cell-cell interactions using single-domain antibodies (VHHs) conjugated to photoactivatable flavin-based cofactors. Following irradiation with visible light, the flavin photocatalyst generates phenoxy radical tags for targeted labeling. Using this technology, we demonstrate selective synaptic labeling across the PD-1/PD-L1 axis in antigen-presenting cell-T cell systems. In combination with multiomics single-cell sequencing, we monitored interactions between peripheral blood mononuclear cells and Raji PD-L1 B cells, revealing differences in transient interactions with specific T cell subtypes. The utility of PhoTag in capturing cell-cell interactions will enable detailed profiling of intercellular communication across different biological systems.


Asunto(s)
Antígeno B7-H1 , Leucocitos Mononucleares , Comunicación Celular , Flavinas , Inmunoterapia
10.
J Hum Evol ; 187: 103490, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38266614

RESUMEN

A frequent source of debate in paleoanthropology concerns the taxonomic unity of fossil assemblages, with many hominin samples exhibiting elevated levels of variation that can be interpreted as indicating the presence of multiple species. By contrast, the large assemblage of hominin fossils from the Rising Star cave system, assigned to Homo naledi, exhibits a remarkably low degree of variation for most skeletal elements. Many factors can contribute to low sample variation, including genetic drift, strong natural selection, biased sex ratios, and sampling of closely related individuals. In this study, we tested for potential sex-biased sampling in the Rising Star dental sample. We compared coefficients of variation for the H. naledi teeth to those for eight extant hominoid samples. We used a resampling procedure that generated samples from the extant taxa that matched the sample size of the fossil sample for each possible Rising Star dental sex ratio. We found that variation at four H. naledi tooth positions-I2, M1, P4, M1-is so low that the possibility that one sex is represented by few or no individuals in the sample cannot be excluded. Additional evidence is needed to corroborate this inference, such as ancient DNA or enamel proteome data, and our study design does not address other potential factors that would account for low sample variation. Nevertheless, our results highlight the importance of considering the taphonomic history of a hominin assemblage and suggest that sex-biased sampling is a plausible explanation for the low level of phenotypic variation found in some aspects of the current H. naledi assemblage.


Asunto(s)
Hominidae , Diente , Humanos , Animales , Fósiles , Flujo Genético , Diente Molar , Diente Primario
11.
PLoS Biol ; 19(1): e3000796, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33497373

RESUMEN

Tsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species. Here we present a promising, environment-friendly alternative to current insecticides that targets the insect tyrosine metabolism pathway. A bloodmeal contains high levels of tyrosine, which is toxic to haematophagous insects if it is not degraded and eliminated. RNA interference (RNAi) of either the first two enzymes in the tyrosine degradation pathway (tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)) was lethal to tsetse. Furthermore, nitisinone (NTBC), an FDA-approved tyrosine catabolism inhibitor, killed tsetse regardless if the drug was orally or topically applied. However, oral administration of NTBC to bumblebees did not affect their survival. Using a novel mathematical model, we show that NTBC could reduce the transmission of African trypanosomiasis in sub-Saharan Africa, thus accelerating current disease elimination programmes.


Asunto(s)
Ciclohexanonas/uso terapéutico , Reposicionamiento de Medicamentos , Control de Infecciones/métodos , Nitrobenzoatos/uso terapéutico , Tripanosomiasis Africana/prevención & control , 4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Animales , Abejas/efectos de los fármacos , Femenino , Humanos , Insecticidas/uso terapéutico , Masculino , Metaboloma/efectos de los fármacos , Ratones , Modelos Teóricos , Enfermedades Desatendidas/prevención & control , Producción de Medicamentos sin Interés Comercial , Ratas , Ratas Wistar , Pruebas de Toxicidad , Tripanosomiasis Africana/transmisión , Moscas Tse-Tse/efectos de los fármacos , Moscas Tse-Tse/metabolismo , Tirosina/metabolismo
12.
Faraday Discuss ; 248(0): 381-391, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37846514

RESUMEN

The lithium-air (Li-air) battery offers one of the highest practical specific energy densities of any battery system at >400 W h kgsystem-1. The practical cell is expected to operate in air, which is flowed into the positive porous electrode where it forms Li2O2 on discharge and is released as O2 on charge. The presence of CO2 and H2O in the gas stream leads to the formation of oxidatively robust side products, Li2CO3 and LiOH, respectively. Thus, a gas handling system is needed to control the flow and remove CO2 and H2O from the gas supply. Here we present the first example of an integrated Li-air battery with in-line gas handling, that allows control over the flow and composition of the gas supplied to a Li-air cell and simultaneous evaluation of the cell and scrubber performance. Our findings reveal that O2 flow can drastically impact the capacity of cells and confirm the need for redox mediators. However, we show that current air-electrode designs translated from fuel cell technology are not suitable for Li-air cells as they result in the need for higher gas flow rates than required theoretically. This puts the scrubber under a high load and increases the requirements for solvent saturation and recapture. Our results clarify the challenges that must be addressed to realise a practical Li-air system and will provide vital insight for future modelling and cell development.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38259170

RESUMEN

A bacterial strain, designated NLS-7T, was isolated through enrichment of landfill cover soil in methane-oxidizing conditions. Strain NLS-7T is a Gram-stain negative, non-motile rod, approximately 0.8 µm wide by 1.3 µm long. Phylogenetic analysis based on 16S rRNA gene sequencing places it within the genus Methylocystis, with its closest relatives being M. hirsuta, M. silviterrae and M. rosea, with 99.9, 99.7 and 99.6 % sequence similarity respectively. However, average nucleotide identity and average amino acid identity values below the 95 % threshold compared to all the close relatives and digital DNA-DNA hybridization values between 20.9 and 54.1 % demonstrate that strain NLS-7T represents a novel species. Genome sequencing generated 4.31 million reads and genome assembly resulted in the generation of 244 contigs with a total assembly length of 3 820 957 bp (N50, 37 735 bp; L50, 34). Genome completeness is 99.5 % with 3.98 % contamination. It is capable of growth on methane and methanol. It grows optimally at 30 °C between pH 6.5 and 7.0. Strain NLS-7T is capable of atmospheric dinitrogen fixation and can use ammonium (as NH4Cl), l-aspartate, l-arginine, yeast extract, nitrate, l-leucine, l-proline, l-methionine, l-lysine and l-alanine as nitrogen sources. The major fatty acids are C18:1 ω8c and C18:1 ω7c. Based upon this polyphasic taxonomic study, strain NLS-7T represents a novel species of the genus Methylocystis, for which the name Methylocystis suflitae sp. nov. is proposed. The type strain is NLS-7T (=ATCC TSD-256T=DSM 112294T). The 16S rRNA gene and genome sequences of strain NLS-7T have been deposited in GenBank under accession numbers ON715489 and GCA_024448135.1, respectively.


Asunto(s)
Methylocystaceae , Methylocystaceae/genética , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Bacterias , Metano
14.
Chem Rev ; 122(6): 6749-6794, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35201751

RESUMEN

Dipolar aprotic and ethereal solvents comprise just over 40% of all organic solvents utilized in synthetic organic, medicinal, and process chemistry. Unfortunately, many of the common "go-to" solvents are considered to be "less-preferable" for a number of environmental, health, and safety (EHS) reasons such as toxicity, mutagenicity, carcinogenicity, or for practical handling reasons such as flammability and volatility. Recent legislative changes have initiated the implementation of restrictions on the use of many of the commonly employed dipolar aprotic solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidinone (NMP), and for ethers such as 1,4-dioxane. Thus, with growing legislative, EHS, and societal pressures, the need to identify and implement the use of alternative solvents that are greener, safer, and more sustainable has never been greater. Within this review, the ubiquitous nature of dipolar aprotic and ethereal solvents is discussed with respect to the physicochemical properties that have made them so appealing to synthetic chemists. An overview of the current legislative restrictions being imposed on the use of dipolar aprotic and ethereal solvents is discussed. A variety of alternative, safer, and more sustainable solvents that have garnered attention over the past decade are then examined, and case studies and examples where less-preferable solvents have been successfully replaced with a safer and more sustainable alternative are highlighted. Finally, a general overview and guidance for solvent selection and replacement are included in the Supporting Information of this review.


Asunto(s)
Química Orgánica , Dimetilformamida , Solventes/química
15.
Occup Med (Lond) ; 74(1): 71-77, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-37995321

RESUMEN

BACKGROUND: Hospital-based occupational health (HBOH) is uniquely positioned to not only prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, but to care for healthcare workers (HCWs) sick with coronavirus disease 2019 (COVID-19). AIMS: The primary objective of this study is to describe a system where HBOH services were adapted to provide a monitoring programme whereby HCWs with SARS-CoV-2 received daily evaluations and treatment options in order to improve access to care, and to report the clinical outcomes and predictors of hospitalization in HCWs enrolled in the programme. A secondary objective is to compare clinical outcomes to data on national HCWs with COVID-19. METHODS: This retrospective cohort study used survey data collected on HCWs at a university health system with COVID-19 from 1 March 2020 through 1 December 2021. A firth regression model was used to examine the unadjusted and adjusted association between clinical factors and hospitalization. RESULTS: The study cohort included 4814 HCWs with COVID-19. Overall hospitalizations were 119 (2%), and there were six deaths (0.12%). Predictors of hospitalization include several co-morbidities and symptoms. A total of 1835 HCWs monitored before vaccine or monoclonal antibody availability were compared with data on U.S. HCWs in a similar time period. The monitored HCWs had a lower rate of co-morbidities (19% versus 44%, P < 0.001), a lower hospitalization rate (3% versus 8% P < 0.001) and case-fatality rate (0.11% versus 0.95% P < 0.001). CONCLUSIONS: This monitoring strategy for COVID-19 may be feasible for HBOH systems to implement and improve access to care, but more data are needed to determine if it improves outcomes.


Asunto(s)
COVID-19 , Salud Laboral , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Estudios Retrospectivos , Personal de Salud
16.
Ann Hum Biol ; 51(1): 2321128, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38509686

RESUMEN

BACKGROUND: Six Homo naledi early juveniles were recovered from U.W. 101 (Dinaledi Chamber), U.W. 102 (Lesedi Chamber), and U.W. 110 in the Rising Star cave system. AIM: This paper develops the information for the H. naledi early juvenile life stage, as defined by a combination of deciduous and permanent dentition, and the eruption of the first permanent molar. SUBJECTS AND METHODS: The growing number of young individuals recovered from the Rising Star cave system allows us to gain a better understanding of their variation, or lack thereof, and provides a basis to estimate broad ranges for age at death of the individuals. The individuals are identified and described through craniodental remains and spatial associations. RESULTS AND CONCLUSION: Our results show that the teeth are remarkably consistent across the localities in their metric and non-metric traits, and our analyses refine previous estimations on dental eruptions with the first permanent molar erupting first in the sequence among permanent teeth.


Asunto(s)
Hominidae , Diente , Animales , Humanos , Sudáfrica , Fósiles , Fenotipo
17.
J Surg Orthop Adv ; 33(1): 29-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38815075

RESUMEN

Bracing reduces the need for surgical intervention in patients with adolescent idiopathic scoliosis (AIS). However, bracing outcomes with variable body mass index (BMI) are understudied. The authors sought to determine the association of BMI with bracing outcomes. The authors performed a retrospective cohort study of 104 patients presenting with AIS. Initial Risser score, hours of bracing per day, BMI percentile, and curve magnitude pre- and postbracing were collected. There was no detectable difference between years of brace wear or primary curve magnitude at time of presentation between both groups. Overall, 29% (25/87) of underweight/normal weight patients and 59% (10/17) of overweight/obese patients had curves ≥ 45 degrees at the end of bracing (p = 0.016). Odds of having a curve ≥ 45 degrees after bracing were 3.5 (95% confidence interval: 1.2 to 10.3, p = 0.021) times higher for overweight/obese patients compared with underweight/normal weight patients. Increased overlying adipose tissue may reduce the corrective forces required to straighten the spine. (Journal of Surgical Orthopaedic Advances 33(1):029-032, 2024).


Asunto(s)
Índice de Masa Corporal , Tirantes , Escoliosis , Humanos , Adolescente , Estudios Retrospectivos , Femenino , Masculino , Niño , Resultado del Tratamiento , Sobrepeso/complicaciones , Delgadez , Obesidad/complicaciones
18.
Circulation ; 145(13): 969-982, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35193378

RESUMEN

BACKGROUND: The risk of cardiovascular disease in type 1 diabetes remains extremely high, despite marked advances in blood glucose control and even the widespread use of cholesterol synthesis inhibitors. Thus, a deeper understanding of insulin regulation of cholesterol metabolism, and its disruption in type 1 diabetes, could reveal better treatment strategies. METHODS: To define the mechanisms by which insulin controls plasma cholesterol levels, we knocked down the insulin receptor, FoxO1, and the key bile acid synthesis enzyme, CYP8B1. We measured bile acid composition, cholesterol absorption, and plasma cholesterol. In parallel, we measured markers of cholesterol absorption and synthesis in humans with type 1 diabetes treated with ezetimibe and simvastatin in a double-blind crossover study. RESULTS: Mice with hepatic deletion of the insulin receptor showed marked increases in 12α-hydroxylated bile acids, cholesterol absorption, and plasma cholesterol. This phenotype was entirely reversed by hepatic deletion of FoxO1. FoxO1 is inhibited by insulin and required for the production of 12α-hydroxylated bile acids, which promote intestinal cholesterol absorption and suppress hepatic cholesterol synthesis. Knockdown of Cyp8b1 normalized 12α-hydroxylated bile acid levels and completely prevented hypercholesterolemia in mice with hepatic deletion of the insulin receptor (n=5-30), as well as mouse models of type 1 diabetes (n=5-22). In parallel, the cholesterol absorption inhibitor, ezetimibe, normalized cholesterol absorption and low-density lipoprotein cholesterol in patients with type 1 diabetes as well as, or better than, the cholesterol synthesis inhibitor, simvastatin (n=20). CONCLUSIONS: Insulin, by inhibiting FoxO1 in the liver, reduces 12α-hydroxylated bile acids, cholesterol absorption, and plasma cholesterol levels. Thus, type 1 diabetes leads to a unique set of derangements in cholesterol metabolism, with increased absorption rather than synthesis. These derangements are reversed by ezetimibe, but not statins, which are currently the first line of lipid-lowering treatment in type 1 diabetes. Taken together, these data suggest that a personalized approach to lipid lowering in type 1 diabetes may be more effective and highlight the need for further studies specifically in this group of patients.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hipercolesterolemia , Hiperlipidemias , Animales , Ácidos y Sales Biliares/metabolismo , LDL-Colesterol , Estudios Cruzados , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/prevención & control , Ezetimiba/farmacología , Ezetimiba/uso terapéutico , Humanos , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/genética , Insulina , Hígado/metabolismo , Ratones , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Simvastatina/farmacología , Simvastatina/uso terapéutico , Esteroide 12-alfa-Hidroxilasa/genética , Esteroide 12-alfa-Hidroxilasa/metabolismo
19.
J Am Chem Soc ; 145(16): 9052-9058, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36974427

RESUMEN

Understanding ion transport in solid materials is crucial in the design of electrochemical devices. Of particular interest in recent years is the study of ion transport across 2-dimensional, atomically thin crystals. In this contribution, we describe the use of a host-guest hybrid redox material based on polyoxometalates (POMs) encapsulated within the internal cavities of single-walled carbon nanotubes (SWNTs) as a model system for exploring ion transport across atomically thin structures. The nanotube sidewall creates a barrier between the redox-active molecules and bulk electrolytes, which can be probed by addressing the redox states of the POMs electrochemically. The electrochemical properties of the {POM}@SWNT system are strongly linked to the nature of the cation in the supporting electrolyte. While acidic electrolytes facilitate rapid, exhaustive, reversible electron transfer and stability during redox cycling, alkaline-salt electrolytes significantly limit redox switching of the encapsulated species. By "plugging" the {POM}@SWNT material with C60-fullerenes, we demonstrate that the primary mode of charge balancing is proton transport through the graphenic lattice of the SWNT sidewalls. Kinetic analysis reveals little kinetic isotope effect on the standard heterogeneous electron transfer rate constant, suggesting that ion transport through the sidewalls is not rate-limiting in our system. The unique capacity of protons and deuterons to travel through graphenic layers unlocks the redox chemistry of nanoconfined redox materials, with significant implications for the use of carbon-coated materials in applications ranging from electrocatalysis to energy storage and beyond.

20.
Lancet ; 399(10338): 1886-1901, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35569466

RESUMEN

BACKGROUND: In men with a detectable prostate-specific antigen (PSA) level after prostatectomy for prostate cancer, salvage prostate bed radiotherapy (PBRT) results in about 70% of patients being free of progression at 5 years. A three-group randomised trial was designed to determine whether incremental gains in patient outcomes can be achieved by adding either 4-6 months of short-term androgen deprivation therapy (ADT) to PBRT, or both short-term ADT and pelvic lymph node radiotherapy (PLNRT) to PBRT. METHODS: The international, multicentre, randomised, controlled SPPORT trial was done at 283 radiation oncology cancer treatment centres in the USA, Canada, and Israel. Eligible patients (aged ≥18 years) were those who after prostatectomy for adenocarcinoma of the prostate had a persistently detectable or an initially undetectable and rising PSA of between 0·1 and 2·0 ng/mL. Patients with and without lymphadenectomy (N0/Nx) were eligible if there was no clinical or pathological evidence of lymph node involvement. Other eligibility criteria included pT2 or pT3 disease, prostatectomy Gleason score of 9 or less, and a Zubrod performance status of 0-1. Eligible patients were randomly assigned to receive PBRT alone at a dose of 64·8-70·2 Gy at 1·8 Gy per fraction daily (group 1), PBRT plus short-term ADT (group 2), or PLNRT (45 Gy at 1·8 Gy per fraction, and then a volume reduction made to the planning target volume for the remaining 19·8-25 ·2 Gy) plus PBRT plus short-term ADT (group 3). The primary endpoint was freedom from progression, in which progression was defined as biochemical failure according to the Phoenix definition (PSA ≥2 ng/mL over the nadir PSA), clinical failure (local, regional, or distant), or death from any cause. A planned interim analysis of 1191 patents with minimum potential follow-up time of 5 years applied a Haybittle-Peto boundary of p<0·001 (one sided) for comparison of 5-year freedom from progression rates between the treatment groups. This trial is registered with ClinicalTrials.gov, NCT00567580. The primary objectives of the trial have been completed, although long-term follow-up is continuing. FINDINGS: Between March 31, 2008, and March 30, 2015, 1792 eligible patients were enrolled and randomly assigned to the three treatment groups (592 to group 1 [PBRT alone], 602 to group 2 [PBRT plus short-term ADT], and 598 to group 3 [PLNRT plus PBRT plus short-term ADT]). 76 patients subsequently found to be ineligible were excluded from the analyses; thus, the evaluable patient population comprised 1716 patients. At the interim analysis (n=1191 patients; data cutoff May 23, 2018), the Haybittle-Peto boundary for 5-year freedom from progression was exceeded when group 1 was compared with group 3 (difference 17·9%, SE 2·9%; p<0·0001). The difference between groups 2 and 3 did not exceed the boundary (p=0·0063). With additional follow-up beyond the interim analysis (the final planned analysis; data cutoff May 26, 2021), at a median follow-up among survivors of 8·2 years (IQR 6·6-9·4), the 5-year freedom from progression rates in all 1716 eligible patients were 70·9% (95% CI 67·0-74·9) in group 1, 81·3% (78·0-84·6) in group 2, and 87·4% (84·7-90·2) in group 3. Per protocol criteria, freedom from progression in group 3 was superior to groups 1 and 2. Acute (≤3 months after radiotherapy) grade 2 or worse adverse events were significantly more common in group 3 (246 [44%] of 563 patients) than in group 2 (201 [36%] of 563; p=0·0034), which, in turn, were more common than in group 1 (98 [18%] of 547; p<0·0001). Similar findings were observed for grade 3 or worse adverse events. However, late toxicity (>3 months after radiotherapy) did not differ significantly between the groups, apart from more late grade 2 or worse blood or bone marrow events in group 3 versus group 2 (one-sided p=0·0060) attributable to the addition of PLNRT in this group. INTERPRETATION: The results of this randomised trial establish the benefit of adding short-term ADT to PBRT to prevent progression in prostate cancer. To our knowledge, these are the first such findings to show that extending salvage radiotherapy to treat the pelvic lymph nodes when combined with short-term ADT results in meaningful reductions in progression after prostatectomy in patients with prostate cancer. FUNDING: National Cancer Institute.


Asunto(s)
Neoplasias de la Próstata , Oncología por Radiación , Adolescente , Adulto , Antagonistas de Andrógenos/uso terapéutico , Andrógenos , Humanos , Ganglios Linfáticos/patología , Masculino , Próstata/patología , Antígeno Prostático Específico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/radioterapia , Terapia Recuperativa/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA