Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 28(9): e202104319, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-34882857

RESUMEN

Centrosymmetric skutterudite RhP3 was converted to a nonsymmorphic and chiral compound RhSi0.3 P2.7 (space group P21 21 21 ) by means of partial replacement of Si for P. The structure, determined by a combination of X-ray crystallography and solid state 31 P NMR, exhibits branched polyanionic P/Si chains that are unique among metal phosphides. A driving force to stabilize the locally noncentrosymmetric cis-RhSi2 P4 and fac-RhSi3 P3 fragments is π-electron back-donation between the Rh t2g -type orbitals and the unoccupied antibonding Si/P orbitals, which is more effective for Si than for P. In situ studies and total energy calculations revealed the metastable nature of RhSi0.3 P2.7 . Electronic structure calculations predicted centrosymmetric cubic RhP3 to be metallic which was confirmed by transport properties measurements. In contrast, the electronic structure for chiral orthorhombic RhSi0.3 P2.7 contained a bandgap, and this compound was shown to be a narrow gap semiconductor.

2.
Chemistry ; 27(26): 7383-7390, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33523500

RESUMEN

Three novel isostructural equiatomic gold tetrel pnictides, AuSiAs, AuGeP, and AuGeAs, were synthesized and characterized. These phases crystallize in the noncentrosymmetric (NCS) monoclinic space group Cc (no. 9), featuring square-planar Au within cis-[AuTt2 Pn2 ] units (Tt=tetrel, Si, Ge; Pn=pnictogen, P, As). This is in drastic contrast to the structure of previously reported AuSiP, which exhibits typical linear coordination of Au with Si and P. Chemical bonding analysis through the electron localization function suggests covalent two-center two-electron Tt-Pn bonds, and three-center Au-Tt-Au and Au-Pn-Au bonds with 1.6 e- per bond. X-ray photoelectron spectroscopy studies support the covalent and nonionic nature of Au-Pn and Au-Tt bonds. The title materials were found to be n-type narrow-gap semiconductors or semimetals, with nearly temperature-independent electrical resistivities and low thermal conductivities. A combination of the semimetallic properties with tunable NCS structure provides opportunities for the development of materials based on gold tetrel pnictides.

3.
Inorg Chem ; 60(8): 5627-5634, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33794094

RESUMEN

Two novel layered compounds BaCuSi2Pn3 (Pn = P, As) adopting new structure types are reported. As revealed by single-crystal X-ray diffraction, both compounds are composed of unique Cu-Si-Pn layers featuring CuPn3 and Si2Pn6 structural motifs found in other archetypal pnictide materials. The stacking of the isostructural Cu-Si-Pn layers is different for phosphide and arsenide compounds. Synthesis from elements aided by in situ synchrotron powder X-ray diffraction resulted in the obtainment of bulk powders with a minimized amount of admixtures. Experimentally measured physical properties of BaCuSi2As3 unexpectedly showed metal-like behavior at temperatures above 15 K, despite the fact that density functional theory calculations predict a small band gap of 0.4 eV. BaCuSi2As3 exhibits ultralow thermal conductivity, which can be explained by the combination of a layered crystal structure with alternating covalent and ionic bonding, which feature rattling of Cu atoms similar to that in tetrahedrites.

4.
Inorg Chem ; 60(14): 10686-10697, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34181854

RESUMEN

Three new sodium zinc antimonides Na11Zn2Sb5, Na4Zn9Sb9, and NaZn3Sb3 were synthesized utilizing sodium hydride NaH as a reactive sodium source. In comparison to the synthesis using sodium metal, salt-like NaH can be ball-milled, leading to the easy and uniform mixing of precursors in the desired stoichiometric ratios. Such comprehensive compositional control enables a fast screening of the Na-Zn-Sb system and identification of new compounds, followed by their preparation in bulk with high purity. Na11Zn2Sb5 crystallizes in the triclinic P1 space group (No. 2, Z = 2, a = 8.8739(6) Å, b = 10.6407(7) Å, c = 11.4282(8) Å, α = 103.453(2)°, ß = 96.997(2)°, γ = 107.517(2)°) and features polyanionic [Zn2Sb5]11- clusters with unusual 3-coordinated Zn atoms. Both Na4Zn9Sb9 (Z = 4, a = 28.4794(4) Å, b = 4.47189(5) Å, c = 17.2704(2) Å, ß = 98.3363(6)°) and NaZn3Sb3 (Z = 8, a = 32.1790(1) Å, b = 4.51549(1) Å, c = 9.64569(2) Å, ß = 98.4618(1)°) crystallize in the monoclinic C2/m space group (No. 12) and have complex new structure types. For both compounds, their frameworks are built from ZnSb4 distorted tetrahedra, which are linked via edge-, vertex-sharing, or both, while Na cations fill in the framework channels. Due to the complex structures, Na4Zn9Sb9 and NaZn3Sb3 compounds exhibit low thermal conductivities (0.97-1.26 W·m-1 K-1) at room temperature, positive Seebeck coefficients (19-32 µV/K) suggestive of holes as charge carriers, and semimetallic electrical resistivities (∼1.0-2.3 × 10-4 Ω·m). Na4Zn9Sb9 and NaZn3Sb3 decompose into the equiatomic NaZnSb above ∼800 K, as determined by in situ synchrotron powder X-ray diffraction. The discovery of multiple ternary compounds highlights the importance of judicious choice of the synthetic method.

5.
Chem Sci ; 12(44): 14718-14730, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34820087

RESUMEN

An innovative method of synthesis is reported for the large and diverse (RE)6(TM) x (Tt)2S14 (RE = rare-earth, TM = transition metals, Tt = Si, Ge, and Sn) family of compounds (∼1000 members, ∼325 contain Si), crystallizing in the noncentrosymmetric, chiral, and polar P63 space group. Traditional synthesis of such phases involves the annealing of elements or binary sulfides at elevated temperatures. The atomic mixing of refractory components technique, presented here, allows the synthesis of known members and vastly expands the family to nearly the entire transition metal block, including 3d, 4d, and 5d TMs with oxidation states ranging from 1+ to 4+. Arc-melting of the RE, TM, and tetrel elements of choice forms an atomically-mixed precursor, which readily reacts with sulfur providing bulk powders and large single crystals of the target quaternary sulfides. Detailed in situ and ex situ experiments show the mechanism of formation, which involves multiphase binary sulfide intermediates. Crystal structures and metal oxidation states were corroborated by a combination of single crystal X-ray diffraction, elemental analysis, EPR, NMR, and SQUID magnetometry. The potential of La6(TM) x (Tt)2S14 compounds for non-linear optical applications was also demonstrated.

6.
Dalton Trans ; 50(19): 6463-6476, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34002748

RESUMEN

Complex polymorphic relationships in the LnSiP3 (Ln = La and Ce) family of compounds are reported. An innovative synthetic method was developed to overcome differences in the reactivities of the rare-earth metal and refractory silicon with phosphorus. Reactions of atomically mixed Ln + Si with P allowed for selective control over the reaction outcomes resulting in targeted isolation of three new polymorphs of LaSiP3 and two polymorphs of CeSiP3. In situ X-ray diffraction studies revealed that the developed method bypasses formation of the thermodynamic dead-end, the binary SiP. Careful re-determination of the crystal structure ruled out the previously reported ordered centrosymmetric structure of CeSiP3 and showed that the main LnSiP3 polymorphs crystallize in the non-centrosymmetric Pna21 and Aea2 space groups featuring distinct distortions of the regular P square net to yield either cis-trans 1D phosphorus chains (Pna21) or disordered-2D phosphorus layers (Aea2). The disordered 2D nature of the P layers in the Aea2 LaSiP3 polymorph was confirmed by Raman spectroscopy. A unique centrosymmetric P21/c polymorph was observed for LaSiP3 and has a completely different crystal structure lacking P layers. Consecutive polymorphic transformations at increasing temperatures for LaSiP3(Pna21 → P21/c → Aea2) were derived from optimized synthetic profiles and confirmed by a combination of phonon computations and experimental in situ and ex situ annealings. Crystal structures of the LaSiP3 polymorphs were verified via advanced solid state NMR analysis using 31P MAS and 31P{139La} double resonance techniques. A combination of phonon and electronic structure calculations, NMR T1 relaxation times, UV/Vis/NIR spectroscopy, and resistivity measurements revealed that all the reported polymorphs are semiconductors with resistivities and thermal conductivities strongly dependent on the degree of distortion of P square layers in the crystal structure. Reported here, non-centrosymmetric LnSiP3 polymorphs with tunable resistivity and thermal conductivity provide a platform for the development of novel functional materials with a wide range of applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA