Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Asian J ; 9(3): 852-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24347173

RESUMEN

Nanostructured α-Fe2 O3 with and without fluorine substitution were successfully obtained by a green route, that is, microwave irradiation. The hematite phase materials were evaluated as a high-performance electrode material in a hybrid supercapacitor configuration along with activated carbon (AC). The presence of fluorine was confirmed through X-ray photoelectron spectroscopy and transmission electron microscopy. Fluorine-doped Fe2 O3 (F-Fe2 O3 ) exhibits an enhanced pseudocapacitive performance compared to that of the bare hematite phase. The F-Fe2 O3 /AC cell delivered a specific capacitance of 71 F g(-1) at a current density of 2.25 A g(-1) and retained approximately 90 % of its initial capacitance after 15 000 cycles. Furthermore, the F-Fe2 O3 /AC cell showed a very high energy density of about 28 W h kg(-1) compared to bare hematite phase (∼9 W h kg(-1) ). These data clearly reveal that the electrochemical performance of Fe2 O3 can be improved by fluorine doping, thereby dramatically improving the energy density of the system.

2.
ChemSusChem ; 7(8): 2310-6, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24920598

RESUMEN

LiMnBO3 nanobeads (LMB-NB) with uniform size and distribution were synthesized using a urea-assisted microwave/solvothermal method. The potential application of LMB-NBs as an anode for a lithium-ion hybrid capacitor (Li-AHC) was tested with a polyaniline-nanofiber (PANI-NF) cathode in a nonaqueous LiPF6 (1 M)-ethylene carbonate/dimethyl carbonate electrolyte. Cyclic voltammetry (CV) and charge-discharge (C/DC) studies revealed that the PANI-NF/LMB-NB cell showed an exceptional capacitance behavior between 0-3 V along with a prolonged cycle life. A discharge capacitance of about 125 F g(-1) , and energy and power densities of about 42 Wh kg(-1) and 1500 W kg(-1) , respectively, could be obtained at a current density of 1 A g(-1) ; those Li-AHC values are higher relative to cells containing various lithium intercalation materials in nonaqueous electrolytes. In addition, the PANI-NF/LMB-NB cell also had an outstanding rate performance with a capacitance of 54 F g(-1) and a power density of 3250 W kg(-1) at a current density of 2.25 A g(-1) and maintained 94% of its initial value after 30000 cycles. This improved capacitive performance with an excellent electrochemical stability could be the result of the morphological features and inherent conductive nature of the electroactive species.


Asunto(s)
Compuestos de Anilina/química , Compuestos de Boro/química , Capacidad Eléctrica , Compuestos de Litio/química , Litio/química , Manganeso/química , Nanofibras/química , Nanopartículas/química , Óxidos/química , Dioxolanos/química , Electroquímica , Electrodos , Formiatos/química , Factores de Tiempo
3.
ChemSusChem ; 7(5): 1435-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24648276

RESUMEN

Very high surface area activated carbons (AC) are synthesized from pine cone petals by a chemical activation process and subsequently evaluated as an electrode material for supercapacitor applications in a nonaqueous medium. The maximum specific surface area of ∼3950 m(2) g(-1) is noted for the material treated with a 1:5 ratio of KOH to pine cone petals (PCC5), which is much higher than that reported for carbonaceous materials derived from various other biomass precursors. A symmetric supercapacitor is fabricated with PCC5 electrodes, and the results showed enhanced supercapacitive behavior with the highest energy density of ∼61 Wh kg(-1). Furthermore, outstanding cycling ability is evidenced for such a configuration, and ∼90 % of the initial specific capacitance after 20,000 cycles under harsh conditions was observed. This result revealed that the pine-cone-derived high-surface-area AC can be used effectively as a promising electrode material to construct high-energy-density supercapacitors.


Asunto(s)
Carbono/química , Suministros de Energía Eléctrica , Electroquímica/instrumentación , Pinus , Capacidad Eléctrica , Electrodos , Microscopía Electrónica de Rastreo , Espectroscopía de Fotoelectrones , Propiedades de Superficie , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA