Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
BMC Neurol ; 24(1): 222, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943101

RESUMEN

BACKGROUND: Spatial normalization to a standardized brain template is a crucial step in magnetic resonance imaging (MRI) studies. Brain templates made from sufficient sample size have low brain variability, improving the accuracy of spatial normalization. Using population-specific template improves accuracy of spatial normalization because brain morphology varies according to ethnicity and age. METHODS: We constructed a brain template of normal Korean elderly (KNE200) using MRI scans 100 male and 100 female aged over 60 years old with normal cognition. We compared the deformation after spatial normalization of the KNE200 template to that of the KNE96, constructed from 96 cognitively normal elderly Koreans and to that of the brain template (OCF), constructed from 434 non-demented older Caucasians to examine the effect of sample size and ethnicity on the accuracy of brain template, respectively. We spatially normalized the MRI scans of elderly Koreans and quantified the amount of deformations associated with spatial normalization using the magnitude of displacement and volumetric changes of voxels. RESULTS: The KNE200 yielded significantly less displacement and volumetric change in the parahippocampal gyrus, medial and posterior orbital gyrus, fusiform gyrus, gyrus rectus, cerebellum and vermis than the KNE96. The KNE200 also yielded much less displacement in the cerebellum, vermis, hippocampus, parahippocampal gyrus and thalamus and much less volumetric change in the cerebellum, vermis, hippocampus and parahippocampal gyrus than the OCF. CONCLUSION: KNE200 had the better accuracy than the KNE96 due to the larger sample size and was far accurate than the template constructed from elderly Caucasians in elderly Koreans.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Femenino , Imagen por Resonancia Magnética/métodos , Masculino , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Persona de Mediana Edad , República de Corea , Pueblo Asiatico , Anciano de 80 o más Años , Envejecimiento , Procesamiento de Imagen Asistido por Computador/métodos , Pueblos del Este de Asia
2.
Geroscience ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004653

RESUMEN

Gamma entrainment through sensory stimulation has the potential to reduce the pathology of Alzheimer's disease in mouse models. However, clinical trials in Alzheimer's disease (AD) patients have yielded inconsistent results, necessitating further investigation. This single-center pre-post intervention study aims to explore the influence of white matter microstructural integrity on gamma rhythm propagation from the visual cortex to AD-affected regions in 31 cognitively normal volunteers aged ≥ 65. Gamma rhythm propagation induced by optimal FLS was measured. Diffusion tensor imaging was employed to assess the integrity of white matter tracts of interest. After excluding 5 participants with a deficit in steady-state visually evoked potentials, 26 participants were included in the final analysis. In the linear regression analyses, gamma entrainment was identified as a significant predictor of gamma propagation (p < 0.001). Furthermore, the study identified white matter microstructural integrity as a significant predictor of gamma propagation by flickering light stimulation (p < 0.05), which was specific to tracts that connect occipital and temporal or frontal regions. These findings indicate that, despite robust entrainment of gamma rhythms in the visual cortex, their propagation to other regions may be impaired if the microstructural integrity of the white matter tracts connecting the visual cortex to other areas is compromised. Consequently, our findings have expanded our understanding of the prerequisites for effective gamma entrainment and suggest that future clinical trials utilizing visual stimulation for gamma entrainment should consider white matter tract microstructural integrity for candidate selection and outcome analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA