Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(19): 10238-10260, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37650633

RESUMEN

Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.


Asunto(s)
Fusarium , Histonas , Hierro , Cromatina , Histonas/genética , Histonas/metabolismo , Hierro/metabolismo , Nucleosomas , Sideróforos/genética , Fusarium/metabolismo
2.
Pestic Biochem Physiol ; 192: 105398, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37105621

RESUMEN

Fusarium ear rot (FER) is a serious fungal disease occurring the late growth stage of maize. FER not only reduces the yield of maize but also causes mycotoxin contamination, which affects the quality of maize and threatens human and animal health. Fusarium verticillioides is the predominant causative pathogen of FER worldwide. At present, there is no registered fungicide for use against maize FER in China. The novel isopropyl alcohol-triazole fungicide mefentrifluconazole (MFZ) has been shown to be effective against several Fusarium spp., but little is known about its specific activity against F. verticillioides. MFZ exhibited strong antifungal activities against 50 strains of F. verticillioides collected from the major maize-growing areas in China. MFZ inhibited mycelial growth, conidium production, germination and germ tube elongation of F. verticillioides. MFZ treatment significantly reduced fumonisin production and the expression levels of fumonisin biosynthetic genes. Genome-wide transcriptional profiling of F. verticillioides in response to MFZ indicated that the expression of genes involved in ergosterol biosynthesis, including fungicide target genes (cyp51 genes), was significantly downregulated by MFZ. MFZ treatment resulted in reduced ergosterol production and increased glycerol and malonaldehyde production as well as relative conductivity in F. verticillioides. A 2-year field experiment showed a significant reduction in FER severity in maize after spraying with MFZ at the tasseling stage. This study evaluated the potential of MFZ to control FER in maize and provides insights into its antifungal activities and mechanism of action against F. verticillioides.


Asunto(s)
Fumonisinas , Fungicidas Industriales , Fusarium , Animales , Humanos , Fumonisinas/metabolismo , Antifúngicos/farmacología , Fungicidas Industriales/farmacología , Fusarium/genética , Triazoles/farmacología , Zea mays/microbiología
3.
Plant Dis ; 107(4): 1060-1066, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36122196

RESUMEN

The present study was performed to evaluate the effect of crop rotation on Fusarium mycotoxins and species in cereals in Sichuan Province. A total of 311 cereal samples were randomly collected and analyzed from 2018 to 2019 in Sichuan Province. The results of mycotoxin analysis showed that the major trichothecene mycotoxins in Sichuan Province were nivalenol (NIV) and deoxynivalenol (DON), and the mean concentration of total trichothecenes (including NIV, fusarenone X [4ANIV], DON, 3-acetyldeoxynivalenol [3ADON], and 15-acetyldeoxynivalenol [15ADON]) in wheat was significantly higher than that in maize and rice. The concentration of total trichothecenes in the succeeding crops was significantly higher than that in the previous crops. In addition, wheat grown after maize had reduced incidence and concentration of trichothecene mycotoxins compared with that grown after rice, and ratooning rice grown after rice had increased incidence and concentration of trichothecene mycotoxins. Our data indicated that Fusarium asiaticum with the NIV chemotype was predominant in wheat and rice samples, while the number of the NIV chemotypes of F. asiaticum and Fusarium meridionale and the 15ADON chemotype of Fusarium graminearum in maize were almost the same. Although the composition of Fusarium species was affected by crop rotations, there were no differences when comparing the same crop rotation except for the maize-wheat rotation. Moreover, the same species and chemotype of Fusarium strains originated from different crops in various rotations, but there were no significant differences in pathogenicity in wheat and rice. These results contribute to the knowledge of the effect of crop rotation on Fusarium mycotoxins and species affecting cereals in Sichuan Province, which may lead to improved strategies for control of Fusarium mycotoxins and fungal disease in China.


Asunto(s)
Fusarium , Micotoxinas , Oryza , Tricotecenos , Grano Comestible/microbiología , Productos Agrícolas , China , Triticum/microbiología , Oryza/microbiología , Producción de Cultivos
4.
Mol Plant Microbe Interact ; 35(1): 85-89, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34533972

RESUMEN

Members of the Fusarium graminearum species complex (FGSC) cause extensive yield losses in cereal production worldwide, and food safety concerns due to the accumulation of Fusarium toxins in infected grains. Among these pathogens, F. meridionale is responsible for Fusarium head blight of wheat and rice, ear and stalk rot of maize, and pod blight of soybean. Here, we present an improved genome assembly of F. meridionale strain SR5 isolated from rice in China based on PacBio long-read sequencing and Illumina short-read sequencing technology. The assembled genome of SR5 has a total size of 36.82 Mb, an N50 scaffold length of 7.82 Mb, nine scaffolds, and encodes 12,409 predicted genes. These high-quality data expand FGSC genomic resources and provide a valuable resource for better understanding their genetic diversity and the molecular basis of pathogenesis, which will facilitate the development of an effective control strategy.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Fusarium , Oryza , Tricotecenos , Fusarium/genética , Genoma
5.
J Appl Microbiol ; 132(4): 3028-3037, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34865297

RESUMEN

AIMS: Cereals contaminated with type B trichothecene nivalenol (NIV) and its acetylated derivative 4-acetyl-nivalenol (4-AcNIV) are a global mycotoxicological problem threatening the health of humans and livestock. Toxicological studies, quantitative determinations and screening for biodegrading micro-organisms require massive amounts of pure toxins. However, the low yield from fungal cultures and high prices of NIV and 4-AcNIV limit research progress in these areas. This work aimed to select Fusarium asiaticum mutant strains with enhanced production of NIV and 4-AcNIV. METHODS AND RESULTS: A total of 62 NIV-producing F. asiaticum strains were isolated and compared regarding their ability to produce NIV. Strain RR108 had the highest yield of NIV among 62 field isolates surveyed and was then genetically modified for higher production. Targeted deletion of the FaFlbA gene, encoding a regulator of G protein signalling protein, resulted in a significant increase in NIV and 4-AcNIV production in the FaFlbA deletion mutant ΔFaFlbA. The expression of three TRI genes involved in the trichothecene biosynthetic pathway was upregulated in ΔFaFlbA. ΔFaFlbA produced the highest amount of NIV and 4-AcNIV when cultured in brown long-grain rice for 21 days, and the yields were 2.07 and 2.84 g kg-1 , respectively. The mutant showed reduced fitness, including reduced conidiation, loss of perithecial development and decreased virulence on wheat heads, which makes it biologically safe for large-scale preparation and purification of NIV and 4-AcNIV. CONCLUSIONS: The F. asiaticum mutant strain ΔFaFlbA presented improved production of NIV and 4-AcNIV with reduced fitness and virulence in plants. SIGNIFICANCE AND IMPACT OF THE STUDY: Targeted deletion of the FaFlbA gene resulted in increased NIV and 4-AcNIV production. Our results provide a practical approach using genetic modification for large-scale mycotoxin production.


Asunto(s)
Fusarium , Tricotecenos , Fusarium/genética , Fusarium/metabolismo , Humanos , Tricotecenos/metabolismo , Triticum/microbiología
6.
Plant Dis ; 105(10): 3269-3275, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33847508

RESUMEN

Several weed species are known as alternative hosts of the Fusarium graminearum species complex (FGSC), and their epidemiological significance in Fusarium head blight (FHB) has been investigated; however, scant information is available regarding FGSC occurrence in weeds near Chinese wheat fields. To evaluate the potential role of gramineous weeds surrounding wheat fields in FHB, 306 FGSC isolates were obtained from 210 gramineous weed samples in 2018 in Jiangsu Province. Among them, 289 were Fusarium asiaticum, and the remainder were F. graminearum. Trichothecene genotype and mycotoxin analyses revealed that 74.3% of the F. asiaticum isolates were the 3-acetyldeoxynivalenol (3ADON) chemotype, and the remainder were the nivalenol (NIV) chemotype. Additionally, 82.4% of F. graminearum isolates were the 15-acetyldeoxynivalenol (15ADON) chemotype, and the remainder were the NIV chemotype. FHB severity and trichothecene analysis indicated that F. asiaticum isolates with the 3ADON chemotype were more aggressive than those with the NIV chemotype in wheat. 3ADON and NIV chemotypes of F. asiaticum isolated from weeds and wheat showed no significant differences in pathogenicity in wheat. All selected F. asiaticum isolates produced perithecia, with little difference between the 3ADON and NIV chemotypes. These results highlight the epidemiology of the FGSC isolated from weeds near wheat fields, with implications for reducing FHB inoculum in China.


Asunto(s)
Fusarium , Micotoxinas , Fusarium/genética , Genotipo , Triticum
7.
Environ Microbiol ; 22(7): 2596-2612, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32100421

RESUMEN

Fungal sexual reproduction requires complex cellular differentiation processes of hyphal cells. The plant pathogenic fungus Fusarium graminearum produces fruiting bodies called perithecia via sexual reproduction, and perithecia forcibly discharge ascospores into the air for disease initiation and propagation. Lipid metabolism and accumulation are closely related to perithecium formation, yet the molecular mechanisms that regulate these processes are largely unknown. Here, we report that a novel fungal specific bZIP transcription factor, F. graminearum perithecium overproducing 1 (Fpo1), plays a role as a global transcriptional repressor during perithecium production and maturation in F. graminearum. Deletion of FPO1 resulted in reduced vegetative growth, asexual sporulation and virulence and overproduced perithecium, which reached maturity earlier, compared with the wild type. Intriguingly, the hyphae of the fpo1 mutant accumulated excess lipids during perithecium production. Using a combination of molecular biological, transcriptomic and biochemical approaches, we demonstrate that repression of FPO1 after sexual induction leads to reprogramming of carbon metabolism, particularly fatty acid production, which affects sexual reproduction of this fungus. This is the first report of a perithecium-overproducing F. graminearum mutant, and the findings provide comprehensive insight into the role of modulation of carbon metabolism in the sexual reproduction of fungi.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Carbono/metabolismo , Cuerpos Fructíferos de los Hongos/metabolismo , Fusarium/genética , Fusarium/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Proteínas Fúngicas/genética , Fusarium/crecimiento & desarrollo , Regulación Fúngica de la Expresión Génica/genética , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Metabolismo de los Lípidos/genética , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/metabolismo
8.
Appl Microbiol Biotechnol ; 104(13): 6045-6056, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32440704

RESUMEN

Deoxynivalenol (DON) is commonly found in wheat and wheat-derived foods, posing a threat to human health. Biodegradation is an efficient and eco-friendly measure for mycotoxin detoxification. Understanding the mechanism of DON biodegradation is hence of great importance. Herein, we report the application of metabolomics methods for the analysis of DON degradation by a bacterial consortium isolated from wheat leaves collected in Jiangsu Province. Metabolomics analysis combined with a nuclear magnetic resonance analysis revealed the main degradation product, 3-keto-DON, and a minor degradation product, 3-epi-DON. Further study illustrated that DON underwent a two-step epimerization through the intermediate 3-keto-DON. Sequencing analysis of the 16S rRNA metagenome of the microorganismal community suggested that the abundance of three bacterial genera, Achromobacter, Sphingopyxis, and Sphingomonas, substantially increased during the coculture of bacterial consortium and DON. Further investigation revealed that Devosia sp. might be responsible for the epimerization of 3-keto-DON. These findings shed light on the catabolic pathways of DON during biodegradation and illustrate the potential of using metabolomics approaches in biodegradation studies.Key Points• A bacterial consortium was isolated with good deoxynivalenol-degrading potential. • Metabolomics approaches were successfully used to interpret the degradation pathway. • A trace-amount degradation product was determined by metabolomics and NMR analysis. Graphical Abstract .


Asunto(s)
Bacterias/metabolismo , Consorcios Microbianos/fisiología , Tricotecenos/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Inactivación Metabólica , Metabolómica , Metagenómica , Consorcios Microbianos/genética , Filogenia , ARN Ribosómico 16S/genética , Tricotecenos/química , Triticum/microbiología
9.
PLoS Genet ; 13(2): e1006595, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28146558

RESUMEN

Various ascomycete fungi possess sex-specific molecular mechanisms, such as repeat-induced point mutations, meiotic silencing by unpaired DNA, and unusual adenosine-to-inosine RNA editing, for genome defense or gene regulation. Using a combined analysis of functional genetics and deep sequencing of small noncoding RNA (sRNA), mRNA, and the degradome, we found that the sex-specifically induced exonic small interference RNA (ex-siRNA)-mediated RNA interference (RNAi) mechanism has an important role in fine-tuning the transcriptome during ascospore formation in the head blight fungus Fusarium graminearum. Approximately one-third of the total sRNAs were produced from the gene region, and sRNAs with an antisense direction or 5'-U were involved in post-transcriptional gene regulation by reducing the stability of the corresponding gene transcripts. Although both Dicers and Argonautes partially share their functions, the sex-specific RNAi pathway is primarily mediated by FgDicer1 and FgAgo2, while the constitutively expressed RNAi components FgDicer2 and FgAgo1 are responsible for hairpin-induced RNAi. Based on our results, we concluded that F. graminearum primarily utilizes ex-siRNA-mediated RNAi for ascosporogenesis but not for genome defenses and other developmental stages. Each fungal species appears to have evolved RNAi-based gene regulation for specific developmental stages or stress responses. This study provides new insights into the regulatory role of sRNAs in fungi and other lower eukaryotes.


Asunto(s)
Exones/genética , Fusarium/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Análisis por Conglomerados , Proteínas Fúngicas/genética , Fusarium/fisiología , Perfilación de la Expresión Génica/métodos , Mutación , ARN de Hongos/genética , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esporas Fúngicas/genética , Esporas Fúngicas/fisiología
10.
Plant Dis ; 104(8): 2193-2201, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32552395

RESUMEN

Species belonging to the Fusarium fujikuroi species complex (FFSC) are of vital importance and are a major concern for food quantity and quality worldwide, as they not only cause serious diseases in crops but also produce various mycotoxins. To characterize the population structure and evaluate the risk of poisonous secondary metabolites, a total of 237 candidate strains were isolated from rice, maize, and soybean samples in Jiangsu Province, China. Species identification of the individual strain was accomplished by sequencing the translation elongation factor 1α gene (TEF-1α) and the fumonisin (FB) synthetic gene (FUM1). The distribution of Fusarium species among the different crops was observed. The maize seeds were dominated by F. proliferatum (teleomorph, Gibberella intermedia) and F. verticillioides (teleomorph, G. moniliformis), whereas F. fujikuroi (teleomorph, G. fujikuroi) was the most frequently isolated species from rice and soybean samples. In addition, phylogenetic analyses of these strains were performed, and the results suggested clear groups showing no obvious relationship with the origin source. FFSC species pathogenicity and toxigenicity were studied. All of the species reduced the rice seed germination rate, with no significant differences. F. fujikuroi showed two distinct patterns of influencing the length of rice seedlings, which were correlated with FBs and gibberellic acid synthesis. FBs were mainly produced by F. verticillioides and F. proliferatum. F. proliferatum and F. fujikuroi also produced moniliformin and beauvericin. The toxigenicity of F. andiyazi (teleomorph, G. andiyazi) was extremely low. Further analysis indicated that the sequence variations in TEF-1α and the differences in the expression levels of the toxin synthesis genes were associated with the diversity of secondary metabolites in F. fujikuroi strains. These findings provide insight into the population-level characterization of the FFSC and might be helpful in the development of strategies for the management of diseases and mycotoxins.


Asunto(s)
Fusarium , Oryza , China , Filogenia , Glycine max , Zea mays
11.
Plant Dis ; 104(8): 2138-2143, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32539593

RESUMEN

Members of Fusarium graminearum species complex (FGSC) are the major pathogens that cause Fusarium head blight (FHB) in cereals worldwide. Symptoms of FHB on rice, including dark staining or browning of rice glumes, were recently observed in Jiangsu Province, China. To improve our understanding of the pathogens involved, 201 FGSC isolates were obtained from freshly harvested rice samples and identified by phylogenetic analyses. Among the 201 FGSC isolates, 196 were F. asiaticum and the remaining 5 were F. graminearum. Trichothecene chemotype and chemical analyses showed that 68.4% of the F. asiaticum isolates were the 3-acetyldeoxynivalenol (3ADON) chemotype and the remainder were the nivalenol (NIV) chemotype. All of the F. graminearum isolates were the 15-acetyldeoxynivalenol chemotype. Pathogenicity assays showed that both the 3ADON and NIV chemotypes of F. asiaticum could infect wheat and rice spikes. FHB severity and trichothecene toxin analysis revealed that F. asiaticum with the NIV chemotype was less aggressive than that with the 3ADON chemotype in wheat, while the NIV-producing strains were more virulent than the 3ADON-producing strains in rice. F. asiaticum isolates with different chemotypes did not show significant differences in mycelial growth, sporulation, conidial dimensions, or perithecial production. These findings would provide useful information for developing management strategies for the control of FHB in China.


Asunto(s)
Fusarium , Oryza , China , Filogenia , Triticum
12.
Fungal Genet Biol ; 111: 30-46, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29175365

RESUMEN

Similar to animals and plants, external stimuli cause dynamic spatial and temporal changes of cytoplasmic Ca2+ in fungi. Such changes are referred as the Ca2+ signature and control cellular responses by modulating the activity or location of diverse Ca2+-binding proteins (CBPs) and also indirectly affecting proteins that interact with CBPs. To understand the mechanism underpinning Ca2+ signaling, therefore, characterization of how Ca2+ moves to and from the cytoplasm to create Ca2+ signatures under different conditions is fundamental. Three genes encoding plasma membrane Ca2+ channels in a Fusarium graminearum strain that expresses a fluorescent protein-based Ca2+ indicator in the cytoplasm were mutagenized to investigate their roles in the generation of Ca2+ signatures under different growth conditions and genetic backgrounds. The genes disrupted include CCH1 and MID1, which encode a high affinity Ca2+ uptake system, and FIG1, encoding a low affinity Ca2+ channel. Resulting mutants were also analyzed for growth, development, pathogenicity and mycotoxin production to determine how loss of each of the genes alters these traits. To investigate whether individual genes influence the function and expression of other genes, phenotypes and Ca2+ signatures of their double and triple mutants, as well as their expression patterns, were analyzed.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Fusarium/metabolismo , Micotoxinas/biosíntesis , Canales de Calcio/genética , Fusarium/genética , Fusarium/crecimiento & desarrollo , Fusarium/patogenicidad , Genes Fúngicos , Hifa/crecimiento & desarrollo , Mutagénesis , Micotoxinas/genética , Fenotipo
13.
Mol Microbiol ; 100(4): 635-55, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26822492

RESUMEN

Using forward genetics, we revealed that the signal peptide peptidase (SPP) SppA, an aspartyl protease involved in regulated intramembrane proteolysis (RIP), is essential for hypoxia adaptation in Aspergillus nidulans, as well as hypoxia-sensitive mutant alleles of a sterol regulatory element-binding protein (SREBP) srbA and the Dsc ubiquitin E3 ligase complex dscA-E. Both null and dead activity [D337A] mutants of sppA failed to grow in hypoxia, and the growth defect of ΔsppA was complemented by nuclear SrbA-N381 expression. Additionally, SppA interacted with SrbA in the endoplasmic reticulum, where SppA localized in normoxia and hypoxia. Expression of the truncated SrbA-N414 covering the SrbA sequence prior to the second transmembrane region rescued the growth of ΔdscA but not of ΔsppA in hypoxia. Unlike ΔdscA and ΔdscA;ΔsppA double mutants, in which SrbA cleavage was blocked, the molecular weight of cleaved SrbA increased in ΔsppA compared to the control strain in immunoblot analyses. Overall, our data demonstrate the sequential cleavage of SrbA by Dsc-linked proteolysis followed by SppA, proposing a new model of RIP for SREBP cleavage in fungal hypoxia adaptation. Furthermore, the function of SppA in hypoxia adaptation was consistent in Aspergillus fumigatus, suggesting the potential roles of SppA in fungal pathogenesis.


Asunto(s)
Adaptación Fisiológica , Ácido Aspártico Endopeptidasas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Oxígeno/fisiología , Proteolisis , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Adaptación Fisiológica/genética , Alelos , Ácido Aspártico Endopeptidasas/genética , Aspergillus nidulans/enzimología , Aspergillus nidulans/crecimiento & desarrollo , Retículo Endoplásmico/metabolismo , Prueba de Complementación Genética , Mutación , Procesamiento Proteico-Postraduccional , Transducción de Señal , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética
14.
Environ Microbiol ; 19(5): 2053-2067, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28296081

RESUMEN

Fusarium graminearum is a prominent plant pathogenic fungus causing Fusarium head blight in major cereal crops worldwide. To understand the molecular mechanisms underlying fungal development and virulence, large collections of F. graminearum mutants have been constructed. Cytochrome P450 monooxygenases (P450s) are widely distributed in organisms and are involved in a diverse array of molecular/metabolic processes; however, no systematic functional analysis of P450s has been attempted in filamentous fungi. In this study, we constructed a genome-wide deletion mutant set covering 102 P450s and analyzed these mutants for changes in 38 phenotypic categories, including fungal development, stress responses and responses to several xenobiotics, to build a comprehensive phenotypic dataset. Most P450 mutants showing defective phenotypes were impaired in a single phenotypic trait, demonstrating that our mutant library is a good genetic resource for further fungal genetic studies. In particular, we identified novel P450s specifically involved in virulence (5) and both asexual (1) and sexual development (2). Most P450s seem to play redundant roles in the degradation of xenobiotics in F. graminearum. This study is the first phenome-based functional analysis of P450s, and it provides a valuable genetic resource for further basic and applied biological research in filamentous fungi and other plant pathogens.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Grano Comestible/microbiología , Proteínas Fúngicas/genética , Fusarium/genética , Xenobióticos/metabolismo , Antifúngicos/metabolismo , Fusarium/patogenicidad , Técnicas de Inactivación de Genes , Micelio/genética , Micelio/crecimiento & desarrollo , Fenotipo , Enfermedades de las Plantas/microbiología , Eliminación de Secuencia , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Triticum/microbiología , Virulencia
15.
J Struct Biol ; 194(3): 395-403, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27016285

RESUMEN

The glyoxylate cycle bypasses a CO2-generating step in the tricarboxylic acid (TCA) cycle and efficiently assimilates C2 compounds into intermediates that can be used in later steps of the TCA cycle. It plays an essential role in pathogen survival during host infection such that the enzymes involved in this cycle have been suggested as potential drug targets against human pathogens. Isocitrate lyase (ICL) catalyzes the first-step reaction of the glyoxylate cycle, using isocitrate from the TCA cycle as the substrate to produce succinate and glyoxylate. In this study we report the crystal structure of Magnaporthe oryzae ICL in both the ligand-free form and as a complex with Mg(2+), glyoxylate, and glycerol, as well as the structure of the Fusarium graminearum ICL complexed with Mn(2+) and malonate. We also describe the ligand-induced conformational changes in the catalytic loop and C-terminal region, both of which are essential for catalysis. Using various mutant ICLs in an activity assay, we gained insight into the function of residues within the active site. These structural and functional analyses provide detailed information with regard to fungal ICLs.


Asunto(s)
Fusarium/enzimología , Isocitratoliasa/química , Magnaporthe/enzimología , Dominio Catalítico , Ciclo del Ácido Cítrico , Cristalografía por Rayos X , Glioxilatos , Interacciones Huésped-Patógeno , Ligandos , Conformación Proteica
16.
Mol Microbiol ; 97(5): 942-56, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26036360

RESUMEN

Several Fusarium species produce the polyketide mycotoxin zearalenone (ZEA), a causative agent of hyperestrogenic syndrome in animals that is often found in F. graminearum-infected cereals in temperate regions. The ZEA biosynthetic cluster genes PKS4, PKS13, ZEB1 and ZEB2 encode a reducing polyketide synthase, a non-reducing polyketide synthase, an isoamyl alcohol oxidase and a transcription factor respectively. In this study, the production of two isoforms (ZEB2L and ZEB2S) from the ZEB2 gene in F. graminearum via an alternative promoter was characterized. ZEB2L contains a basic leucine zipper (bZIP) DNA-binding domain at the N-terminus, whereas ZEB2S is an N-terminally truncated form of ZEB2L that lacks the bZIP domain. Interestingly, ZEA triggers the induction of both ZEB2L and ZEB2S transcription. ZEB2L and ZEB2S interact with each other to form a heterodimer that regulates ZEA production by reducing the binding affinity of ZEB2L for the ZEB2L gene promoter. Our study provides insight into the autoregulation of ZEB2 expression by alternative promoter usage and a feedback loop during ZEA production; this regulatory mechanism is similar to that observed in higher eukaryotes.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zearalenona/biosíntesis , Grano Comestible/química , Retroalimentación Fisiológica , Proteínas Fúngicas/química , Fusarium/efectos de los fármacos , Regulación Fúngica de la Expresión Génica , Homeostasis , Leucina Zippers , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Isoformas de Proteínas , Multimerización de Proteína , Factores de Transcripción/química , Transcripción Genética , Técnicas del Sistema de Dos Híbridos , Zearalenona/farmacología
17.
Environ Microbiol ; 17(6): 2048-63, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25627458

RESUMEN

Sodium is an abundant cation required for protein function and maintenance of cellular osmotic homeostasis. High concentrations of sodium are toxic, and fungi have evolved efficient sodium efflux systems. In this study, we characterized a novel sodium tolerance mechanism in the plant pathogen Fusarium graminearum. Fusarium graminearum sodium sensitive 1 (Fss1) is a nuclear transcription factor with a Zn(II)2 Cys6 fungal-type DNA-binding domain required for sodium tolerance. RNA-seq and genetic studies revealed that a P-type ATPase pump, exitus natru (Latin: exit sodium) 1 (FgEna5), mediates the phenotypic defects of FSS1 mutants. A homologue of PACC (PAC1) was required for FgEna5-dependent sodium and lithium tolerance independent of Fss1. The results of this study revealed that F. graminearum has a distinct and novel pathway for sodium tolerance not present in other model fungi.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Litio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sodio/metabolismo , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Factores de Transcripción/genética
18.
Eukaryot Cell ; 13(1): 87-98, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24186953

RESUMEN

Fusarium graminearum, a prominent fungal pathogen that infects major cereal crops, primarily utilizes asexual spores to spread disease. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we functionally characterized the F. graminearum ortholog of Aspergillus nidulans wetA, which has been shown to be involved in conidiogenesis and conidium maturation. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidial dormancy by suppressing microcycle conidiation in F. graminearum. Transcriptome analyses demonstrated that most of the putative conidiation-related genes are expressed constitutively and that only a few genes are specifically involved in F. graminearum conidiogenesis. The conserved and distinct roles identified for WetA in F. graminearum provide new insights into the genetics of conidiation in filamentous fungi.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/genética , Secuencia de Aminoácidos , Autofagia , Proteínas Fúngicas/genética , Fusarium/metabolismo , Fusarium/fisiología , Genes Fúngicos , Respuesta al Choque Térmico , Datos de Secuencia Molecular , Micelio/citología , Micelio/crecimiento & desarrollo , Estrés Oxidativo , Fenotipo , Eliminación de Secuencia , Esporas Fúngicas/citología , Esporas Fúngicas/crecimiento & desarrollo , Transcriptoma , Virulencia/genética
19.
Eukaryot Cell ; 13(3): 427-36, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24465002

RESUMEN

The survival of cellular organisms depends on the faithful replication and transmission of DNA. Regulatory factor X (RFX) transcription factors are well conserved in animals and fungi, but their functions are diverse, ranging from the DNA damage response to ciliary gene regulation. We investigated the role of the sole RFX transcription factor, RFX1, in the plant-pathogenic fungus Fusarium graminearum. Deletion of rfx1 resulted in multiple defects in hyphal growth, conidiation, virulence, and sexual development. Deletion mutants of rfx1 were more sensitive to various types of DNA damage than the wild-type strain. Septum formation was inhibited and micronuclei were produced in the rfx1 deletion mutants. The results of the neutral comet assay demonstrated that disruption of rfx1 function caused spontaneous DNA double-strand breaks (DSBs). The transcript levels of genes involved in DNA DSB repair were upregulated in the rfx1 deletion mutants. DNA DSBs produced micronuclei and delayed septum formation in F. graminearum. Green fluorescent protein (GFP)-tagged RFX1 localized in nuclei and exhibited high expression levels in growing hyphae and conidiophores, where nuclear division was actively occurring. RNA-sequencing-based transcriptomic analysis revealed that RFX1 suppressed the expression of many genes, including those required for the repair of DNA damage. Taken together, these findings indicate that the transcriptional repressor rfx1 performs crucial roles during normal cell growth by maintaining genome integrity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/genética , Genoma Fúngico , Inestabilidad Genómica , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Fusarium/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/genética , Regulación hacia Arriba
20.
Nucleic Acids Res ; 41(Database issue): D714-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23193288

RESUMEN

In 2007, Comparative Fungal Genomics Platform (CFGP; http://cfgp.snu.ac.kr/) was publicly open with 65 genomes corresponding to 58 fungal and Oomycete species. The CFGP provided six bioinformatics tools, including a novel tool entitled BLASTMatrix that enables search homologous genes to queries in multiple species simultaneously. CFGP also introduced Favorite, a personalized virtual space for data storage and analysis with these six tools. Since 2007, CFGP has grown to archive 283 genomes corresponding to 152 fungal and Oomycete species as well as 201 genomes that correspond to seven bacteria, 39 plants and 105 animals. In addition, the number of tools in Favorite increased to 27. The Taxonomy Browser of CFGP 2.0 allows users to interactively navigate through a large number of genomes according to their taxonomic positions. The user interface of BLASTMatrix was also improved to facilitate subsequent analyses of retrieved data. A newly developed genome browser, Seoul National University Genome Browser (SNUGB), was integrated into CFGP 2.0 to support graphical presentation of diverse genomic contexts. Based on the standardized genome warehouse of CFGP 2.0, several systematic platforms designed to support studies on selected gene families have been developed. Most of them are connected through Favorite to allow of sharing data across the platforms.


Asunto(s)
Bases de Datos Genéticas , Evolución Molecular , Genoma Fúngico , Oomicetos/genética , Genómica , Internet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA