Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38041253

RESUMEN

Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered the stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.


Asunto(s)
Imagen por Resonancia Magnética , Memoria Episódica , Humanos , Encéfalo/fisiología , Recuerdo Mental/fisiología , Mapeo Encefálico
2.
Cereb Cortex ; 33(13): 8150-8163, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-36997155

RESUMEN

Successful neuromodulation approaches to alter episodic memory require closed-loop stimulation predicated on the effective classification of brain states. The practical implementation of such strategies requires prior decisions regarding electrode implantation locations. Using a data-driven approach, we employ support vector machine (SVM) classifiers to identify high-yield brain targets on a large data set of 75 human intracranial electroencephalogram subjects performing the free recall (FR) task. Further, we address whether the conserved brain regions provide effective classification in an alternate (associative) memory paradigm along with FR, as well as testing unsupervised classification methods that may be a useful adjunct to clinical device implementation. Finally, we use random forest models to classify functional brain states, differentiating encoding versus retrieval versus non-memory behavior such as rest and mathematical processing. We then test how regions that exhibit good classification for the likelihood of recall success in the SVM models overlap with regions that differentiate functional brain states in the random forest models. Finally, we lay out how these data may be used in the design of neuromodulation devices.


Asunto(s)
Encéfalo , Electrodos , Electroencefalografía , Memoria Episódica , Bosques Aleatorios , Máquina de Vectores de Soporte , Humanos , Encéfalo/fisiología , Interfaces Cerebro-Computador , Análisis por Conglomerados , Electrodos/normas , Electroencefalografía/métodos , Electroencefalografía/normas , Recuerdo Mental , Aprendizaje Automático no Supervisado
3.
Epilepsia ; 64(6): 1568-1581, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37013668

RESUMEN

OBJECTIVE: Stereotactic laser amygdalohippocampotomy (SLAH) is an appealing option for patients with temporal lobe epilepsy, who often require intracranial monitoring to confirm mesial temporal seizure onset. However, given limited spatial sampling, it is possible that stereotactic electroencephalography (stereo-EEG) may miss seizure onset elsewhere. We hypothesized that stereo-EEG seizure onset patterns (SOPs) may differentiate between primary onset and secondary spread and predict postoperative seizure control. In this study, we characterized the 2-year outcomes of patients who underwent single-fiber SLAH after stereo-EEG and evaluated whether stereo-EEG SOPs predict postoperative seizure freedom. METHODS: This retrospective five-center study included patients with or without mesial temporal sclerosis (MTS) who underwent stereo-EEG followed by single-fiber SLAH between August 2014 and January 2022. Patients with causative hippocampal lesions apart from MTS or for whom the SLAH was considered palliative were excluded. An SOP catalogue was developed based on literature review. The dominant pattern for each patient was used for survival analysis. The primary outcome was 2-year Engel I classification or recurrent seizures before then, stratified by SOP category. RESULTS: Fifty-eight patients were included, with a mean follow-up duration of 39 ± 12 months after SLAH. Overall 1-, 2-, and 3-year Engel I seizure freedom probability was 54%, 36%, and 33%, respectively. Patients with SOPs, including low-voltage fast activity or low-frequency repetitive spiking, had a 46% 2-year seizure freedom probability, compared to 0% for patients with alpha or theta frequency repetitive spiking or theta or delta frequency rhythmic slowing (log-rank test, p = .00015). SIGNIFICANCE: Patients who underwent SLAH after stereo-EEG had a low probability of seizure freedom at 2 years, but SOPs successfully predicted seizure recurrence in a subset of patients. This study provides proof of concept that SOPs distinguish between hippocampal seizure onset and spread and supports using SOPs to improve selection of SLAH candidates.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Estudios Retrospectivos , Resultado del Tratamiento , Epilepsia del Lóbulo Temporal/diagnóstico , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/complicaciones , Convulsiones/diagnóstico , Convulsiones/cirugía , Convulsiones/complicaciones , Electroencefalografía , Rayos Láser , Imagen por Resonancia Magnética
4.
Proc Natl Acad Sci U S A ; 117(45): 28463-28474, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33109718

RESUMEN

The organization of temporal information is critical for the encoding and retrieval of episodic memories. In the rodent hippocampus and entorhinal cortex, evidence accumulated over the last decade suggests that populations of "time cells" in the hippocampus encode temporal information. We identify time cells in humans using intracranial microelectrode recordings obtained from 27 human epilepsy patients who performed an episodic memory task. We show that time cell activity predicts the temporal organization of retrieved memory items. We also uncover evidence of ramping cell activity in humans, which represents a complementary type of temporal information. These findings establish a cellular mechanism for the representation of temporal information in the human brain needed to form episodic memories.


Asunto(s)
Corteza Entorrinal/fisiología , Hipocampo/fisiología , Memoria Episódica , Escala de Evaluación de la Conducta , Encéfalo , Epilepsia , Humanos , Lóbulo Temporal , Texas
5.
J Neurosci ; 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131036

RESUMEN

Functional magnetic resonance imaging (fMRI) is among the foremost methods for mapping human brain function but provides only an indirect measure of underlying neural activity. Recent findings suggest that the neurophysiological correlates of the fMRI blood-oxygen-level-dependent (BOLD) signal might be regionally specific. We examined the neurophysiological correlates of the fMRI BOLD signal in the hippocampus and neocortex, where differences in neural architecture might result in a different relationship between the respective signals. Fifteen human neurosurgical patients (10 female, 5 male) implanted with depth electrodes performed a verbal free recall task while electrophysiological activity was recorded simultaneously from hippocampal and neocortical sites. The same patients subsequently performed a similar version of the task during a later fMRI session. Subsequent memory effects (SMEs) were computed for both imaging modalities as patterns of encoding-related brain activity predictive of later free recall. Linear mixed-effects modelling revealed that the relationship between BOLD and gamma-band SMEs was moderated by the lobar location of the recording site. BOLD and high gamma (70-150 Hz) SMEs positively covaried across much of the neocortex. This relationship was reversed in the hippocampus, where a negative correlation between BOLD and high gamma SMEs was evident. We also observed a negative relationship between BOLD and low gamma (30-70 Hz) SMEs in the medial temporal lobe more broadly. These results suggest that the neurophysiological correlates of the BOLD signal in the hippocampus differ from those observed in the neocortex.Significance Statement:The blood-oxygen-level-dependent (BOLD) signal forms the basis of fMRI but provides only an indirect measure of neural activity. Task-related modulation of BOLD signals are typically equated with changes in gamma-band activity; however, relevant empirical evidence comes largely from the neocortex. We examined neurophysiological correlates of the BOLD signal in the hippocampus, where the differing neural architecture might result in a different relationship between the respective signals. We identified a positive relationship between encoding-related changes in BOLD and gamma-band activity in frontal and parietal cortex. This effect was reversed in the hippocampus, where BOLD and gamma-band effects negatively covaried. These results suggest regional variability in the transfer function between neural activity and the BOLD signal in the hippocampus and neocortex.

6.
Hippocampus ; 32(7): 481-487, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35579307

RESUMEN

A necessary condition for forming episodic memories is the construction of specific episodes demarcated from other episodes in space and time. Evidence from studies of episodic memory formation using rodent models suggest that the medial temporal lobe (MTL) supports the representation of boundary information. Building on recent work using human microelectrode recordings as well, we hypothesized of human MTL neurons with firing rates sensitive to episodic boundary information. We identified 27 episodic boundary neurons out of 736 single neurons recorded across 27 subjects. Firing of these neurons increased at the beginning and end of mnemonically relevant episodes in the free recall task. We distinguish episodic boundary neurons from a population of ramping neurons (n = 58), which are time-sensitive neurons whose activity provides complementary information during episodic representation. Episodic boundary neurons exhibited a U-shaped activity pattern demonstrating increased activity after both beginning and end boundaries of encoding and retrieval epochs. We also describe evidence that the firing of boundary neurons within episodic boundaries is organized by hippocampal theta oscillations, using spike-field coherence metrics.


Asunto(s)
Memoria Episódica , Lóbulo Temporal , Hipocampo/fisiología , Humanos , Recuerdo Mental/fisiología , Neuronas , Lóbulo Temporal/fisiología
7.
Epilepsia ; 63(9): 2325-2337, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35708911

RESUMEN

OBJECTIVE: The medial temporal lobe (MTL) encodes and recalls memories and can be a predominant site for interictal spikes (IS) in patients with focal epilepsy. It is unclear whether memory deficits are due to IS in the MTL producing a transient decline. Here, we investigated whether IS in the MTL subregions and lateral temporal cortex impact episodic memory encoding and recall. METHODS: Seventy-eight participants undergoing presurgical evaluation for medically refractory focal epilepsy with depth electrodes placed in the temporal lobe participated in a verbal free recall task. IS were manually annotated during the pre-encoding, encoding, and recall epochs. We examined the effect of IS on word recall using mixed-effects logistic regression. RESULTS: IS in the left hippocampus (odds ratio [OR] = .73, 95% confidence interval [CI] = .63-.84, p < .001) and left middle temporal gyrus (OR = .46, 95% CI = .27-.78, p < .05) during word encoding decreased subsequent recall performance. Within the left hippocampus, this effect was specific for area CA1 (OR = .76, 95% CI = .66-.88, p < .01) and dentate gyrus (OR = .74, 95% CI = .62-.89, p < .05). IS in other MTL subregions or inferior and superior temporal gyrus and IS occurring during the prestimulus window did not affect word encoding (p > .05). IS during retrieval in right hippocampal (OR = .22, 95% CI = .08-.63, p = .01) and parahippocampal regions (OR = .24, 95% CI = .07-.8, p < .05) reduced the probability of recalling a word. SIGNIFICANCE: IS in medial and lateral temporal cortex contribute to transient memory decline during verbal episodic memory.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Memoria Episódica , Epilepsia Refractaria/cirugía , Epilepsias Parciales/cirugía , Hipocampo/cirugía , Humanos , Recuerdo Mental , Lóbulo Temporal/cirugía
8.
Proc Natl Acad Sci U S A ; 116(48): 24343-24352, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31723043

RESUMEN

The medial temporal lobe (MTL) is known to support episodic memory and spatial navigation, raising the possibility that its true function is to form "cognitive maps" of any kind of information. Studies in humans and animals support the idea that the hippocampal theta rhythm (4 to 8 Hz) is key to this mapping function, as it has been repeatedly observed during spatial navigation tasks. If episodic memory and spatial navigation are 2 sides of the same coin, we hypothesized that theta oscillations might reflect relations between explicitly nonspatial items, such as words. We asked 189 neurosurgical patients to perform a verbal free-recall task, of which 96 had indwelling electrodes placed in the MTL. Subjects were instructed to remember short lists of sequentially presented nouns. We found that hippocampal theta power and connectivity during item retrieval coded for semantic distances between words, as measured using word2vec-derived subspaces. Additionally, hippocampal theta indexed temporal distances between words after filtering lists on recall performance, to ensure adequate dynamic range in time. Theta effects were noted only for semantic subspaces of 1 dimension, indicating a substantial compression of the possible semantic feature space. These results lend further support to our growing confidence that the MTL forms cognitive maps of arbitrary representational spaces, helping to reconcile longstanding differences between the spatial and episodic memory literatures.


Asunto(s)
Hipocampo/fisiología , Memoria Episódica , Ritmo Teta , Análisis por Conglomerados , Electroencefalografía , Humanos , Recuerdo Mental , Experimentación Humana no Terapéutica , Giro Parahipocampal/fisiología , Semántica , Lóbulo Temporal/fisiología
9.
J Neurosci ; 40(49): 9507-9518, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33158958

RESUMEN

Models of memory formation posit that episodic memory formation depends critically on the hippocampus, which binds features of an event to its context. For this reason, the contrast between study items that are later recollected with their associative pair versus those for which no association is made fails should reveal electrophysiological patterns in the hippocampus selectively involved in associative memory encoding. Extensive data from studies in rodents support a model in which theta oscillations fulfill this role, but results in humans have not been as clear. Here, we used an associative recognition memory procedure to identify hippocampal correlates of successful associative memory encoding and retrieval in patients (10 females and 9 males) undergoing intracranial EEG monitoring. We identified a dissociation between 2-5 Hz and 5-9 Hz theta oscillations, by which power increases in 2-5 Hz oscillations were uniquely linked with successful associative memory in both the anterior and posterior hippocampus. These oscillations exhibited a significant phase reset that also predicted successful associative encoding and distinguished recollected from nonrecollected items at retrieval, as well as contributing to relatively greater reinstatement of encoding-related patterns for recollected versus nonrecollected items. Our results provide direct electrophysiological evidence that 2-5 Hz hippocampal theta oscillations preferentially support the formation of associative memories, although we also observed memory-related effects in the 5-9 Hz frequency range using measures such as phase reset and reinstatement of oscillatory activity.SIGNIFICANCE STATEMENT Models of episodic memory encoding predict that theta oscillations support the formation of interitem associations. We used an associative recognition task designed to elicit strong hippocampal activation to test this prediction in human neurosurgical patients implanted with intracranial electrodes. The findings suggest that 2-5 Hz theta oscillatory power and phase reset in the hippocampus are selectively associated with associative memory judgments. Furthermore, reinstatement of oscillatory patterns in the hippocampus was stronger for successful recollection. Collectively, the findings support a role for hippocampal theta oscillations in human associative memory.


Asunto(s)
Aprendizaje por Asociación/fisiología , Hipocampo/fisiología , Consolidación de la Memoria/fisiología , Ritmo Teta/fisiología , Adulto , Electrocorticografía , Femenino , Humanos , Masculino , Memoria Episódica , Recuerdo Mental/fisiología , Persona de Mediana Edad , Reconocimiento en Psicología , Adulto Joven
10.
Neuroimage ; 245: 118689, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34742943

RESUMEN

Episodic memory requires associating items with temporal context, a process for which the medial temporal lobe (MTL) is critical. This study uses recordings from 27 human subjects who were undergoing surgical intervention for intractable epilepsy. These same data were also utilized in Umbach et al. (2020). We identify 103 memory-sensitive neurons in the hippocampus and entorhinal cortex, whose firing rates predicted successful episodic memory encoding as subjects performed a verbal free recall task. These neurons exhibit important properties. First, as predicted from the temporal context model, they demonstrate reinstatement of firing patterns observed during encoding at the time of retrieval. The magnitude of reinstatement predicted the tendency of subjects to cluster retrieved memory items according to input serial position. Also, we found that spiking activity of these neurons was locked to the phase of hippocampal theta oscillations, but that the mean phase of spiking shifted between memory encoding versus retrieval. This unique observation is consistent with predictions of the "Separate Phases at Encoding And Retrieval (SPEAR)" model. Together, the properties we identify for memory-sensitive neurons characterize direct electrophysiological mechanisms for the representation of contextual information in the human MTL.


Asunto(s)
Mapeo Encefálico/métodos , Imagen por Resonancia Magnética , Memoria Episódica , Neuronas/fisiología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología , Adolescente , Adulto , Epilepsia/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad
11.
Hippocampus ; 31(5): 481-492, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33544408

RESUMEN

Phase amplitude coupling (PAC) between theta and gamma oscillations represents a key neurophysiological mechanism that promotes the temporal organization of oscillatory activity. For this reason, PAC has been implicated in item/context integration for episodic processes, including coordinating activity across multiple cortical regions. While data in humans has focused principally on PAC within a single brain region, data in rodents has revealed evidence that the phase of the hippocampal theta oscillation modulates gamma oscillations in the cortex (and vice versa). This pattern, termed cross-regional PAC (xPAC), has not previously been observed in human subjects engaged in mnemonic processing. We use a unique dataset with intracranial electrodes inserted simultaneously into the hippocampus and seven cortical regions across 40 human subjects to (1) test for the presence of significant cross-regional PAC (xPAC), (2) to establish that the magnitude of xPAC predicts memory encoding success, (3) to describe specific frequencies within the broad 2-9 Hz theta range that govern hippocampal-cortical interactions in xPAC, and (4) compare anterior versus posterior hippocampal xPAC patterns. We find that strong functional xPAC occurs principally between the hippocampus and other mesial temporal structures, namely entorhinal and parahippocampal cortices, and that xPAC is overall stronger for posterior hippocampal connections. We also show that our results are not confounded by alternative factors such as inter-regional phase synchrony, local PAC occurring within cortical regions, or artifactual theta oscillatory waveforms.


Asunto(s)
Memoria Episódica , Encéfalo , Hipocampo/fisiología , Ritmo Teta/fisiología
12.
Epilepsia ; 62(2): 481-491, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33332586

RESUMEN

OBJECTIVE: This study was undertaken to evaluate the influence that subject-specific factors have on intracranial interictal epileptiform discharge (IED) rates in persons with refractory epilepsy. METHODS: One hundred fifty subjects with intracranial electrodes performed multiple sessions of a free recall memory task; this standardized task controlled for subject attention levels. We utilized a dominance analysis to rank the importance of subject-specific factors based on their relative influence on IED rates. Linear mixed-effects models were employed to comprehensively examine factors with highly ranked importance. RESULTS: Antiseizure medication (ASM) status, time of testing, and seizure onset zone (SOZ) location were the highest-ranking factors in terms of their impact on IED rates. The average IED rate of electrodes in SOZs was 34% higher than the average IED rate of electrodes outside of SOZs (non-SOZ; p < .001). However, non-SOZ electrodes had similar IED rates regardless of the subject's SOZ location (p = .99). Subjects on older generation (p < .001) and combined generation (p < .001) ASM regimens had significantly lower IED rates relative to the group taking no ASMs; newer generation ASM regimens demonstrated a nonsignificant association with IED rates (p = .13). Of the ASMs included in this study, the following ASMs were associated with significant reductions in IED rates: levetiracetam (p < .001), carbamazepine (p < .001), lacosamide (p = .03), zonisamide (p = .01), lamotrigine (p = .03), phenytoin (p = .03), and topiramate (p = .01). We observed a nonsignificant association between time of testing and IED rates (morning-afternoon p = .15, morning-evening p = .85, afternoon-evening p = .26). SIGNIFICANCE: The current study ranks the relative influence that subject-specific factors have on IED rates and highlights the importance of considering certain factors, such as SOZ location and ASM status, when analyzing IEDs for clinical or research purposes.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia Refractaria/fisiopatología , Adulto , Atención , Carbamazepina/uso terapéutico , Epilepsia Refractaria/tratamiento farmacológico , Electrocorticografía , Femenino , Humanos , Lacosamida/uso terapéutico , Lamotrigina/uso terapéutico , Levetiracetam/uso terapéutico , Masculino , Recuerdo Mental , Persona de Mediana Edad , Fenitoína/uso terapéutico , Factores de Tiempo , Topiramato/uso terapéutico , Zonisamida/uso terapéutico
13.
Epilepsia ; 62(11): 2615-2626, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34486107

RESUMEN

OBJECTIVE: Interictal epileptiform discharges (IEDs) were shown to be associated with cognitive impairment in persons with epilepsy. Previous studies indicated that IED rate, location, timing, and spatial relation to the seizure onset zone could predict an IED's impact on memory encoding and retrieval if they occurred in lateral temporal, mesial temporal, or parietal regions. In this study, we explore the influence that other IED properties (e.g., amplitude, duration, white matter classification) have on memory performance. We were specifically interested in investigating the influence that lateral temporal IEDs have on memory encoding. METHODS: Two hundred sixty-one subjects with medication-refractory epilepsy undergoing intracranial electroencephalographic monitoring performed multiple sessions of a delayed free-recall task (n = 671). Generalized linear mixed models were utilized to examine the relationship between IED properties and memory performance. RESULTS: We found that increased IED rate, IEDs propagating in white matter, and IEDs localized to the left middle temporal region were associated with poorer memory performance. For lateral temporal IEDs, we observed a significant interaction between IED white matter categorization and amplitude, where IEDs with an increased amplitude and white matter propagation were associated with reduced memory performance. Additionally, changes in alpha power after an IED showed a significant positive correlation with memory performance. SIGNIFICANCE: Our results suggest that IED properties may be useful for predicting the impact an IED has on memory encoding. We provide an essential step toward understanding pathological versus potentially beneficial interictal epileptiform activity.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Epilepsia Refractaria/complicaciones , Electroencefalografía/métodos , Epilepsia/complicaciones , Humanos , Trastornos de la Memoria/complicaciones , Convulsiones/complicaciones
14.
J Neurosci ; 39(36): 7173-7182, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31358651

RESUMEN

Neuroimaging experiments implicate the posterior cingulate cortex (PCC) in episodic memory processing, making it a potential target for responsive neuromodulation strategies outside of the hippocampal network. However, causal evidence for the role that PCC plays in memory encoding is lacking. In human female and male participants (N = 17) undergoing seizure mapping, we investigated functional properties of the PCC using deep brain stimulation (DBS) and stereotactic electroencephalography. We used a verbal free recall paradigm in which the PCC was stimulated during presentation of half of the study lists, whereas no stimulation was applied during presentation of the remaining lists. We investigated whether stimulation affected memory and modulated hippocampal activity. Results revealed four main findings. First, stimulation during episodic memory encoding impaired subsequent free recall, predominantly for items presented early in the study lists. Second, PCC stimulation increased hippocampal gamma-band power. Third, stimulation-induced hippocampal gamma power predicted the magnitude of memory impairment. Fourth, functional connectivity between the hippocampus and PCC predicted the strength of the stimulation effect on memory. Our findings offer causal evidence implicating the PCC in episodic memory encoding. Importantly, the results indicate that stimulation targeted outside of the temporal lobe can modulate hippocampal activity and impact behavior. Furthermore, measures of connectivity between brain regions within a functional network can be informative in predicting behavioral effects of stimulation. Our findings have significant implications for developing therapies to treat memory disorders and cognitive impairment using DBS.SIGNIFICANCE STATEMENT Cognitive impairment and memory loss are critical public health challenges. Deep brain stimulation (DBS) is a promising tool for developing strategies to ameliorate memory disorders by targeting brain regions involved in mnemonic processing. Using DBS, our study sheds light on the lesser-known role of the posterior cingulate cortex (PCC) in memory encoding. Stimulating the PCC during encoding impairs subsequent recall memory. The degree of impairment is predicted by stimulation-induced hippocampal gamma oscillations and functional connectivity between PCC and hippocampus. Our findings provide the first causal evidence implicating PCC in memory encoding and highlight the PCC as a favorable target for neuromodulation strategies using a priori connectivity measures to predict stimulation effects. This has significant implications for developing therapies for memory diseases.


Asunto(s)
Estimulación Encefálica Profunda/efectos adversos , Giro del Cíngulo/fisiopatología , Memoria Episódica , Adulto , Femenino , Ritmo Gamma , Hipocampo/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Convulsiones/fisiopatología
15.
Neuroimage ; 207: 116397, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31770638

RESUMEN

Intra-cranial electroencephalographic brain recordings (iEEG) provide a powerful tool for investigating the neural processes supporting episodic memory encoding and form the basis of experimental therapies aimed at improving memory dysfunction. However, given the invasiveness of iEEG, investigations are constrained to patients with drug-resistant epilepsy for whom such recordings are clinically indicated. Particularly in the case of temporal lobe epilepsy (TLE), neuropathology and the possibility of functional reorganization are potential constraints on the generalizability of intra-cerebral findings and pose challenges to the development of therapies for memory disorders stemming from other etiologies. Here, samples of TLE (N â€‹= â€‹16; all of whom had undergone iEEG) and age-matched healthy control (N â€‹= â€‹19) participants underwent fMRI as they studied lists of concrete nouns. fMRI BOLD responses elicited by the study words were segregated according to subsequent performance on tests of delayed free recall and recognition memory. Subsequent memory effects predictive of both successful recall and recognition memory were evident in several neural regions, most prominently in the left inferior frontal gyrus, and did not demonstrate any group differences. Behaviorally, the groups did not differ in overall recall performance or in the strength of temporal contiguity effects. However, group differences in serial position effects and false alarm rates were evident during the free recall and recognition memory tasks, respectively. Despite these behavioral differences, neuropathology associated with temporal lobe epilepsy was apparently insufficient to give rise to detectable differences in the functional neuroanatomy of episodic memory encoding relative to neurologically healthy controls. The findings provide reassurance that iEEG findings derived from experimental paradigms similar to those employed here generalize to the neurotypical population.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Trastornos de la Memoria/fisiopatología , Memoria Episódica , Reconocimiento en Psicología/fisiología , Adolescente , Adulto , Epilepsia Refractaria/fisiopatología , Epilepsia del Lóbulo Temporal/patología , Femenino , Humanos , Imagen por Resonancia Magnética/efectos adversos , Masculino , Recuerdo Mental/fisiología , Corteza Prefrontal/fisiopatología , Lóbulo Temporal/fisiopatología
16.
Nucleic Acids Res ; 46(13): 6576-6591, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29860315

RESUMEN

Hypoxia-inducible factor 1 (HIF-1) is a master transcriptional regulator in response to hypoxia and its transcriptional activity is crucial for cancer cell mobility. Here we present evidence for a novel epigenetic mechanism that regulates HIF-1 transcriptional activity and HIF-1-dependent migration of glioblastoma cells. The lysine methyltransferases G9a and GLP directly bound to the α subunit of HIF-1 (HIF-1α) and catalyzed mono- and di-methylation of HIF-1α at lysine (K) 674 in vitro and in vivo. K674 methylation suppressed HIF-1 transcriptional activity and expression of its downstream target genes PTGS1, NDNF, SLC6A3, and Linc01132 in human glioblastoma U251MG cells. Inhibition of HIF-1 by K674 methylation is due to reduced HIF-1α transactivation domain function but not increased HIF-1α protein degradation or impaired binding of HIF-1 to hypoxia response elements. K674 methylation significantly decreased HIF-1-dependent migration of U251MG cells under hypoxia. Importantly, we found that G9a was downregulated by hypoxia in glioblastoma, which was inversely correlated with PTGS1 expression and survival of patients with glioblastoma. Therefore, our findings uncover a hypoxia-induced negative feedback mechanism that maintains high activity of HIF-1 and cell mobility in human glioblastoma.


Asunto(s)
Autoantígenos/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Proteínas de la Matriz de Golgi/metabolismo , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Transcripción Genética , Hipoxia de la Célula , Línea Celular , Movimiento Celular , Glioblastoma/metabolismo , Glioblastoma/fisiopatología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Lisina/metabolismo , Metilación , Elementos de Respuesta
17.
J Neurosci ; 38(13): 3265-3272, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29467145

RESUMEN

Environmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. Although studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now. To address this gap in the literature, we analyzed intracranial recordings from the hippocampal formation of surgical epilepsy patients (of both sexes) while they performed a virtual spatial navigation task and compared the power in three frequency bands (1-4, 4-10, and 30-90 Hz) for target locations near and far from the environmental boundaries. Our results suggest that encoding locations near boundaries elicited stronger theta oscillations than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial length, speed, movement, or performance. These findings provide direct evidence of boundary-dependent neural activity localized in humans to the subiculum, the homolog of the hippocampal subregion in which most boundary cells are found in rodents, and indicate that this system can represent attended locations that rather than the position of one's own body.SIGNIFICANCE STATEMENT Spatial computations using environmental boundaries are an integral part of the brain's spatial mapping system. In rodents, border/boundary cells in the subiculum and entorhinal cortex reveal boundary coding at the single-neuron level. Although there is good reason to believe that such representations also exist in humans, the evidence has thus far been limited to functional neuroimaging studies that broadly implicate the hippocampus in boundary-based navigation. By combining intracranial recordings with high-resolution imaging of hippocampal subregions, we identified a neural marker of boundary representation in the human subiculum.


Asunto(s)
Hipocampo/fisiología , Navegación Espacial , Ritmo Teta , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
J Neurosci ; 38(19): 4471-4481, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29636396

RESUMEN

The medial temporal lobe (MTL) is widely implicated in supporting episodic memory and navigation, but its precise functional role in organizing memory across time and space remains elusive. Here we examine the specific cognitive processes implemented by MTL structures (hippocampus and entorhinal cortex) to organize memory by using electrical brain stimulation, leveraging its ability to establish causal links between brain regions and features of behavior. We studied neurosurgical patients of both sexes who performed spatial-navigation and verbal-episodic memory tasks while brain stimulation was applied in various regions during learning. During the verbal memory task, stimulation in the MTL disrupted the temporal organization of encoded memories such that items learned with stimulation tended to be recalled in a more randomized order. During the spatial task, MTL stimulation impaired subjects' abilities to remember items located far away from boundaries. These stimulation effects were specific to the MTL. Our findings thus provide the first causal demonstration in humans of the specific memory processes that are performed by the MTL to encode when and where events occurred.SIGNIFICANCE STATEMENT Numerous studies have implicated the medial temporal lobe (MTL) in encoding spatial and temporal memories, but they have not been able to causally demonstrate the nature of the cognitive processes by which this occurs in real-time. Electrical brain stimulation is able to demonstrate causal links between a brain region and a given function with high temporal precision. By examining behavior in a memory task as subjects received MTL stimulation, we provide the first causal evidence demonstrating the role of the MTL in organizing the spatial and temporal aspects of episodic memory.


Asunto(s)
Corteza Entorrinal/fisiología , Hipocampo/fisiología , Memoria/fisiología , Memoria Espacial/fisiología , Percepción del Tiempo/fisiología , Mapeo Encefálico , Simulación por Computador , Estimulación Eléctrica , Electrodos Implantados , Epilepsia/cirugía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria Episódica , Recuerdo Mental/fisiología , Lóbulo Temporal/fisiología
19.
Hippocampus ; 29(2): 68-72, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30394594

RESUMEN

The question of whether the anterior and posterior hippocampus serve different or complementary functional roles during episodic memory processing has been motivated by noteworthy findings in rodent experiments and from noninvasive studies in humans. Researchers have synthesized these data to postulate several models of functional specialization, However, the issue has not been explored in detail using direct brain recordings. We recently published evidence that theta power increases during episodic memory encoding occur in the posterior hippocampus in humans. In our current investigation we analyzed an expanded data set of 32 epilepsy patients undergoing stereo EEG seizure mapping surgery with electrodes precisely targeted to the anterior and posterior hippocampus simultaneously who performed an episodic memory task. Using a repeated measures design, we looked for an interaction between encoding versus retrieval differences in gamma oscillatory power and anterior versus posterior hippocampal location. Our findings are consistent with a recently articulated model (the HERNET model) favoring posterior hippocampal activation during retrieval related processing. We also tested for encoding versus retrieval differences in the preferred gamma frequency band (high versus low gamma oscillations) motivated by published rodent data.


Asunto(s)
Ritmo Gamma/fisiología , Hipocampo/fisiología , Memoria Episódica , Memoria a Corto Plazo/fisiología , Electroencefalografía/métodos , Humanos
20.
Brain ; 141(4): 971-978, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29324988

RESUMEN

Direct electrical stimulation of the human brain can elicit sensory and motor perceptions as well as recall of memories. Stimulating higher order association areas of the lateral temporal cortex in particular was reported to activate visual and auditory memory representations of past experiences (Penfield and Perot, 1963). We hypothesized that this effect could be used to modulate memory processing. Recent attempts at memory enhancement in the human brain have been focused on the hippocampus and other mesial temporal lobe structures, with a few reports of memory improvement in small studies of individual brain regions. Here, we investigated the effect of stimulation in four brain regions known to support declarative memory: hippocampus, parahippocampal neocortex, prefrontal cortex and temporal cortex. Intracranial electrode recordings with stimulation were used to assess verbal memory performance in a group of 22 patients (nine males). We show enhanced performance with electrical stimulation in the lateral temporal cortex (paired t-test, P = 0.0067), but not in the other brain regions tested. This selective enhancement was observed both on the group level, and for two of the four individual subjects stimulated in the temporal cortex. This study shows that electrical stimulation in specific brain areas can enhance verbal memory performance in humans.awx373media15704855796001.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Trastornos de la Memoria/terapia , Lóbulo Temporal/fisiología , Aprendizaje Verbal/fisiología , Adulto , Mapeo Encefálico , Epilepsia/complicaciones , Femenino , Humanos , Masculino , Trastornos de la Memoria/etiología , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA