Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Data ; 9(1): 153, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383179

RESUMEN

The Symbiodiniaceae are a taxonomically and functionally diverse family of marine dinoflagellates. Their symbiotic relationship with invertebrates such as scleractinian corals has made them the focus of decades of research to resolve the underlying biology regulating their sensitivity to stressors, particularly thermal stress. Research to-date suggests that Symbiodiniaceae stress sensitivity is governed by a complex interplay between phylogenetic dependent and independent traits (diversity of characteristics of a species). Consequently, there is a need for datasets that simultaneously broadly resolve molecular and physiological processes under stressed and non-stressed conditions. Therefore, we provide a dataset simultaneously generating transcriptome, metabolome, and proteome data for three ecologically important Symbiodiniaceae isolates under nutrient replete growth conditions and two temperature treatments (ca. 26 °C and 32 °C). Elevated sea surface temperature is primarily responsible for coral bleaching events that occur when the coral-Symbiodiniaceae relationship has been disrupted. Symbiodiniaceae can strongly influence their host's response to thermal stress and consequently it is necessary to resolve drivers of Symbiodiniaceae heat stress tolerance. We anticipate these datasets to expand our understanding on the key genotypic and functional properties that influence the sensitivities of Symbiodiniaceae to thermal stress.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/genética , Antozoos/metabolismo , Dinoflagelados/genética , Dinoflagelados/metabolismo , Respuesta al Choque Térmico , Metaboloma , Filogenia , Proteoma , Simbiosis , Transcriptoma
2.
Curr Biol ; 29(16): 2723-2730.e4, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31402301

RESUMEN

Severe marine heatwaves have recently become a common feature of global ocean conditions due to a rapidly changing climate [1, 2]. These increasingly severe thermal conditions are causing an unprecedented increase in the frequency and severity of mortality events in marine ecosystems, including on coral reefs [3]. The degradation of coral reefs will result in the collapse of ecosystem services that sustain over half a billion people globally [4, 5]. Here, we show that marine heatwave events on coral reefs are biologically distinct to how coral bleaching has been understood to date, in that heatwave conditions result in an immediate heat-induced mortality of the coral colony, rapid coral skeletal dissolution, and the loss of the three-dimensional reef structure. During heatwave-induced mortality, the coral skeletons exposed by tissue loss are, within days, encased by a complex biofilm of phototrophic microbes, whose metabolic activity accelerates calcium carbonate dissolution to rates exceeding accretion by healthy corals and far greater than has been documented on reefs under normal seawater conditions. This dissolution reduces the skeletal density and hardness and increases porosity. These results demonstrate that severe-heatwave-induced mortality events should be considered as a distinct biological phenomenon from bleaching events on coral reefs. We also suggest that such heatwave mortality events, and rapid reef decay, will become more frequent as the intensity of marine heatwaves increases and provides further compelling evidence for the need to mitigate climate change and instigate actions to reduce marine heatwaves.


Asunto(s)
Antozoos/fisiología , Arrecifes de Coral , Calor/efectos adversos , Agua de Mar/química , Animales , Muerte , Queensland
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA