Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Toxicol ; 96(2): 511-524, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34783865

RESUMEN

Arylamine N-acetyltransferase 1 (NAT1) plays a pivotal role in the metabolism of carcinogens and is a drug target for cancer prevention and/or treatment. A protein-ligand virtual screening of 2 million chemicals was ranked for predicted binding affinity towards the inhibition of human NAT1. Sixty of the five hundred top-ranked compounds were tested experimentally for inhibition of recombinant human NAT1 and N-acetyltransferase 2 (NAT2). The most promising compound 9,10-dihydro-9,10-dioxo-1,2-anthracenediyl diethyl ester (compound 10) was found to be a potent and selective NAT1 inhibitor with an in vitro IC50 of 0.75 µM. Two structural analogs of this compound were selective but less potent for inhibition of NAT1 whereas a third structural analog 1,2-dihydroxyanthraquinone (a compound 10 hydrolysis product also known as Alizarin) showed comparable potency and efficacy for human NAT1 inhibition. Compound 10 inhibited N-acetylation of the arylamine carcinogen 4-aminobiphenyl (ABP) both in vitro and in DNA repair-deficient Chinese hamster ovary (CHO) cells in situ stably expressing human NAT1 and CYP1A1. Compound 10 and Alizarin effectively inhibited NAT1 in cryopreserved human hepatocytes whereas inhibition of NAT2 was not observed. Compound 10 caused concentration-dependent reductions in DNA adduct formation and DNA double-strand breaks following metabolism of aromatic amine carcinogens beta-naphthylamine and/or ABP in CHO cells. Compound 10 inhibited proliferation and invasion in human breast cancer cells and showed selectivity towards tumorigenic versus non-tumorigenic cells. In conclusion, our study identifies potent, selective, and efficacious inhibitors of human NAT1. Alizarin's ability to inhibit NAT1 could reduce breast cancer metastasis particularly to bone.


Asunto(s)
Arilamina N-Acetiltransferasa/antagonistas & inhibidores , Neoplasias de la Mama/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Isoenzimas/antagonistas & inhibidores , Animales , Antraquinonas/farmacología , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Células CHO , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Simulación por Computador , Cricetinae , Cricetulus , Aductos de ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Inhibidores Enzimáticos/administración & dosificación , Hepatocitos/enzimología , Humanos , Concentración 50 Inhibidora
2.
Arch Toxicol ; 95(1): 311-319, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33136180

RESUMEN

Exposure to alkylanilines found in tobacco smoke and indoor air is associated with risk of bladder cancer. Genetic factors significantly influence the metabolism of arylamine carcinogens and the toxicological outcomes that result from exposure. We utilized nucleotide excision repair (NER)-deficient immortalized human fibroblasts to examine the effects of human N-acetyltransferase 1 (NAT1), CYP1A2, and common rapid (NAT2*4) and slow (NAT2*5B or NAT2*7B) acetylator human N-acetyltransferase 2 (NAT2) haplotypes on environmental arylamine and alkylaniline metabolism. We constructed SV40-transformed human fibroblast cells that stably express human NAT2 alleles (NAT2*4, NAT2*5B, or NAT2*7B) and human CYP1A2. Human NAT1 and NAT2 apparent kinetic constants were determined following recombinant expression of human NAT1 and NAT2 in yeast for the arylamines benzidine, 4-aminobiphenyl (ABP), and 2-aminofluorene (2-AF), and the alkylanilines 2,5-dimethylaniline (DMA), 3,4-DMA, 3,5-DMA, 2-6-DMA, and 3-ethylaniline (EA) compared with those of the prototype NAT1-selective substrate p-aminobenzoic acid and NAT2-selective substrate sulfamethazine. Benzidine, 3,4-DMA, and 2-AF were preferential human NAT1 substrates, while 3,5-DMA, 2,5-DMA, 3-EA, and ABP were preferential human NAT2 substrates. Neither recombinant human NAT1 or NAT2 catalyzed the N-acetylation of 2,6-DMA. Among the alkylanilines, N-acetylation of 3,5-DMA was substantially higher in human fibroblasts stably expressing NAT2*4 versus NAT2*5B and NAT2*7B. The results provide important insight into the role of the NAT2 acetylator polymorphism (in the presence of competing NAT1 and CYP1A2-catalyzed N-acetylation and N-hydroxylation) on the metabolism of putative alkyaniline carcinogens. The N-acetylation of two alkylanilines associated with urinary bladder cancer (3-EA and 3,5-DMA) was modified by NAT2 acetylator polymorphism.


Asunto(s)
Aminas/metabolismo , Compuestos de Anilina/metabolismo , Arilamina N-Acetiltransferasa/metabolismo , Carcinógenos/metabolismo , Fibroblastos/enzimología , Variantes Farmacogenómicas , Acetilación , Aminas/toxicidad , Compuestos de Anilina/toxicidad , Arilamina N-Acetiltransferasa/genética , Carcinógenos/toxicidad , Línea Celular Transformada , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Haplotipos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Medición de Riesgo , Especificidad por Sustrato , Transfección , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/enzimología , Neoplasias de la Vejiga Urinaria/genética
3.
J Chem Inf Model ; 60(4): 2396-2404, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32159345

RESUMEN

Despite the well-known adverse health effects associated with tobacco use, addiction to nicotine found in tobacco products causes difficulty in quitting among users. Nicotinic acetylcholine receptors (nAChRs) are the physiological targets of nicotine and facilitate addiction to tobacco products. The nAChR-α7 subtype plays an important role in addiction; therefore, predicting the binding activity of tobacco constituents to nAChR-α7 is an important component for assessing addictive potential of tobacco constituents. We developed an α7 binding activity prediction model based on a large training data set of 843 chemicals with human α7 binding activity data extracted from PubChem and ChEMBL. The model was tested using 1215 chemicals with rat α7 binding activity data from the same databases. Based on the competitive docking results, the docking scores were partitioned to the key residues that play important roles in the receptor-ligand binding. A decision forest was used to train the human α7 binding activity prediction model based on the partition of docking scores. Five-fold cross validations were conducted to estimate the performance of the decision forest models. The developed model was used to predict the potential human α7 binding activity for 5275 tobacco constituents. The human α7 binding activity data for 84 of the 5275 tobacco constituents were experimentally measured to confirm and empirically validate the prediction results. The prediction accuracy, sensitivity, and specificity were 64.3, 40.0, and 81.6%, respectively. The developed prediction model of human α7 may be a useful tool for high-throughput screening of potential addictive tobacco constituents.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Nicotina , Unión Proteica , Ratas , Receptores Nicotínicos/metabolismo , Nicotiana , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
4.
Toxicol Sci ; 180(1): 122-135, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33021639

RESUMEN

There has been limited toxicity testing of cigarillos, including comparison to cigarettes. This study compared the smoke chemistry and the cytotoxic and genotoxic potential of 10 conventional cigarettes and 10 cigarillos based on the greatest market share. Whole smoke and total particulate matter (TPM) were generated using the Canadian Intense and International Organization for Standardization puffing protocols. Tobacco-specific nitrosamines, carbonyls, and polycyclic aromatic hydrocarbons were measured using gas chromatography-mass spectrometry. TPM smoke extracts were used for the in vitro assays. Cytotoxicity was assessed in human bronchial epithelial continuously cultured cell line cells using the neutral red uptake assay. Genotoxic potential was assessed using the micronucleus (human lung adenocarcinoma continuously cultured cell line cells), Ames, and thymidine kinase assays. TPM from all cigarillos tested was more cytotoxic than cigarettes. Micronucleus formation was significantly greater for cigarillos compared with cigarettes at the highest dose of TPM, with or without rat liver S9 fraction. In the Ames test +S9, both tobacco products exhibited significant dose-dependent increases in mutation frequency, indicating metabolic activation is required for genotoxicity. In the thymidine kinase assay +S9, cigarillos showed a significantly enhanced mutation frequency although both tobacco products were positive. The levels of all measured polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, and carbonyls (except acrolein) were significantly greater in cigarillos than cigarettes. The Canadian Intense puffing protocol demonstrated increased smoke constituent levels compared with International Organization for Standardization. Even though the gas vapor phase was not tested, the results of this study showed that under the tested conditions the investigated cigarillos showed greater toxicity than comparator cigarettes. This study found that there is significantly greater toxicity in the tested U.S. marketed cigarillos than cigarettes for tobacco constituent levels, cytotoxicity, and genotoxicity. These findings are important for understanding the human health toxicity from the use of cigarillos relative to cigarettes and for building upon knowledge regarding harm from cigarillos to inform risk mitigation strategies.


Asunto(s)
Humo , Productos de Tabaco , Animales , Canadá , Daño del ADN , Humanos , Pruebas de Mutagenicidad , Ratas , Humo/efectos adversos , Nicotiana , Productos de Tabaco/toxicidad
5.
Bioorg Med Chem Lett ; 20(10): 3103-6, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20400305

RESUMEN

SSR149415 was the first non-peptide vasopressin-(V(1b)) receptor antagonist reported. It has been used to probe the role of V(1b) receptors in animal models of depression, aggression, and stress-anxiety, and was progressed to clinical trials for the treatment of depression. Due to the interest in V(1b) receptors as a therapeutic target and the growing use of SSR149415 in preclinical research, we developed a method to label SSR145419 with carbon-11 and have studied its pharmacokinetics in non-human primates using positron emission tomography.


Asunto(s)
Ansiolíticos/síntesis química , Indoles/síntesis química , Tomografía de Emisión de Positrones , Pirrolidinas/síntesis química , Animales , Ansiolíticos/química , Ansiolíticos/farmacocinética , Antagonistas de los Receptores de Hormonas Antidiuréticas , Ansiedad/tratamiento farmacológico , Radioisótopos de Carbono/química , Depresión/tratamiento farmacológico , Indoles/química , Indoles/farmacocinética , Papio , Pirrolidinas/química , Pirrolidinas/farmacocinética , Receptores de Vasopresinas/metabolismo
6.
Cancer Epidemiol Biomarkers Prev ; 29(3): 659-667, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31988072

RESUMEN

BACKGROUND: Monitoring population-level toxicant exposures from smokeless tobacco (SLT) use is important for assessing population health risks due to product use. In this study, we assessed tobacco biomarkers of exposure (BOE) among SLT users from the Wave 1 (2013-2014) of the Population Assessment of Tobacco and Health (PATH) Study. METHODS: Urinary biospecimens were collected from adults ages 18 and older. Biomarkers of nicotine, tobacco-specific nitrosamines (TSNA), polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOC), metals, and inorganic arsenic were analyzed and reported among exclusive current established SLT users in comparison with exclusive current established cigarette smokers, dual SLT and cigarette users, and never tobacco users. RESULTS: In general, SLT users (n = 448) have significantly higher concentrations of BOE to nicotine, TSNAs, and PAHs compared with never tobacco users; significant dose-response relationships between frequency of SLT use and biomarker concentrations were also reported among exclusive SLT daily users. Exclusive SLT daily users have higher geometric mean concentrations of total nicotine equivalent-2 (TNE2) and TSNAs than exclusive cigarette daily smokers. In contrast, geometric mean concentrations of PAHs and VOCs were substantially lower among exclusive SLT daily users than exclusive cigarette daily smokers. CONCLUSIONS: Our study produced a comprehensive assessment of SLT product use and 52 biomarkers of tobacco exposure. Compared with cigarette smokers, SLT users experience greater concentrations of some tobacco toxicants, including nicotine and TSNAs. IMPACT: Our data add information on the risk assessment of exposure to SLT-related toxicants. High levels of harmful constituents in SLT remain a health concern.


Asunto(s)
Uso de Tabaco/efectos adversos , Tabaco sin Humo/toxicidad , Adolescente , Adulto , Biomarcadores/orina , Carcinógenos/análisis , Carcinógenos/toxicidad , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Nicotina/toxicidad , Nicotina/orina , Nitrosaminas , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/orina , Prevalencia , Fumadores/estadística & datos numéricos , Uso de Tabaco/epidemiología , Uso de Tabaco/orina , Estados Unidos/epidemiología , Compuestos Orgánicos Volátiles/toxicidad , Compuestos Orgánicos Volátiles/orina , Adulto Joven
7.
Lett Drug Des Discov ; 5(6): 369-376, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-25568641

RESUMEN

PDK1 is pivotal in the development and progression of several cancers. A 3D pharmacophore was developed for pyrazole derivatives displaying anti-proliferative activity and PDK1 inhibition. The pharmacophore was utilized in the design of benzimidazole analogs. Our preliminary results indicate the pharmacophore should be useful in designing PDK1 inhibitors and anti-proliferative agents.

8.
Oncotarget ; 9(24): 16899-16916, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29682193

RESUMEN

The detrimental health effects associated with tobacco use constitute a major public health concern. The addiction associated with nicotine found in tobacco products has led to difficulty in quitting among users. Nicotinic acetylcholine receptors (nAChRs) are the targets of nicotine and are responsible for addiction to tobacco products. However, it is unknown if the other >8000 tobacco constituents are addictive. Since it is time-consuming and costly to experimentally assess addictive potential of such larger number of chemicals, computationally predicting human nAChRs binding is important for in silico evaluation of addiction potential of tobacco constituents and needs structures of human nAChRs. Therefore, we constructed three-dimensional structures of the ligand binding domain of human nAChR α7 subtype and then developed a predictive model based on the constructed structures to predict human nAChR α7 binding activity of tobacco constituents. The predictive model correctly predicted 11 out of 12 test compounds to be binders of nAChR α7. The model is a useful tool for high-throughput screening of potential addictive tobacco constituents. These results could inform regulatory science research by providing a new validated predictive tool using cutting-edge computational methodology to high-throughput screen tobacco additives and constituents for their binding interaction with the human α7 nicotinic receptor. The tool represents a prediction model capable of screening thousands of chemicals found in tobacco products for addiction potential, which improves the understanding of the potential effects of additives.

9.
SLAS Discov ; 22(6): 686-695, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28298165

RESUMEN

Nicotine, the addictive component of tobacco products, is an agonist at nicotinic acetylcholine receptors (nAChRs) in the brain. The subtypes of nAChR are defined by their α- and ß-subunit composition. The α6ß2ß3 nAChR subtype is expressed in terminals of dopaminergic neurons that project to the nucleus accumbens and striatum and modulate dopamine release in brain regions involved in nicotine addiction. Although subtype-dependent selectivity of nicotine is well documented, subtype-selective profiles of other tobacco product constituents are largely unknown and could be essential for understanding the addiction-related neurological effects of tobacco products. We describe the development and validation of a recombinant cell line expressing human α6/3ß2ß3V273S nAChR for screening and profiling assays in an automated patch clamp platform (IonWorks Barracuda). The cell line was pharmacologically characterized by subtype-selective and nonselective reference agonists, pore blockers, and competitive antagonists. Agonist and antagonist effects detected by the automated patch clamp approach were comparable to those obtained by conventional electrophysiological assays. A pilot screen of a library of Food and Drug Administration-approved drugs identified compounds, previously not known to modulate nAChRs, which selectively inhibited the α6/3ß2ß3V273S subtype. These assays provide new tools for screening and subtype-selective profiling of compounds that act at α6ß2ß3 nicotinic receptors.


Asunto(s)
Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Técnicas de Placa-Clamp , Receptores Nicotínicos/metabolismo , Línea Celular , Clonación Molecular , Descubrimiento de Drogas/métodos , Fenómenos Electrofisiológicos/efectos de los fármacos , Expresión Génica , Vectores Genéticos/genética , Humanos , Activación del Canal Iónico , Subunidades de Proteína/metabolismo , Receptores Nicotínicos/genética , Bibliotecas de Moléculas Pequeñas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA