Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(21): 5874-9, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27162336

RESUMEN

Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium deposition, by contrast, have increased in many regions. Together these changes have altered the balance between oxidized and reduced nitrogen deposition. Across most of the United States, wet deposition has transitioned from being nitrate-dominated in the 1980s to ammonium-dominated in recent years. Ammonia has historically not been routinely measured because there are no specific regulatory requirements for its measurement. Recent expansion in ammonia observations, however, along with ongoing measurements of nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) US nitrogen deposition budget. Observations from 37 sites reveal that reduced nitrogen contributes, on average, ∼65% of the total inorganic nitrogen deposition budget. Dry deposition of ammonia plays an especially key role in nitrogen deposition, contributing from 19% to 65% in different regions. Future progress toward reducing US nitrogen deposition will be increasingly difficult without a reduction in ammonia emissions.


Asunto(s)
Amoníaco/análisis , Contaminantes Ambientales/análisis , Nitratos/análisis , Ácido Nítrico/análisis , Óxidos de Nitrógeno/análisis , Nitrógeno/análisis , Agricultura/tendencias , Amoníaco/química , Atmósfera/química , Conservación de los Recursos Naturales , Ecosistema , Monitoreo del Ambiente , Contaminantes Ambientales/química , Humanos , Nitratos/química , Ácido Nítrico/química , Nitrógeno/química , Óxidos de Nitrógeno/química , Oxidación-Reducción , Estados Unidos , Emisiones de Vehículos/análisis
4.
Environ Sci Technol ; 47(3): 1274-9, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23286301

RESUMEN

Mercury (Hg) is a toxic metal that is found in aquatic food webs and is hazardous to human and wildlife health. We examined the relationship between Hg deposition, land coverage by coniferous and deciduous forests, and average Hg concentrations in largemouth bass (Micropterus salmoides)-equivalent fish (LMBE) in 14 ecoregions located within all or part of six states in the South Central U.S. In 11 ecoregions, the average Hg concentrations in 35.6-cm total length LMBE were above 300 ng/g, the threshold concentration of Hg recommended by the U.S. Environmental Protection Agency for the issuance of fish consumption advisories. Percent land coverage by coniferous forests within ecoregions had a significant linear relationship with average Hg concentrations in LMBE while percent land coverage by deciduous forests did not. Eighty percent of the variance in average Hg concentrations in LMBE between ecoregions could be accounted for by estimated Hg deposition after adjusting for the effects of coniferous forests. Here we show for the first time that fish from ecoregions with high atmospheric Hg pollution and coniferous forest coverage pose a significant hazard to human health. Our study suggests that models that use Hg deposition to predict Hg concentrations in fish could be improved by including the effects of coniferous forests on Hg deposition.


Asunto(s)
Monitoreo del Ambiente , Contaminación Ambiental/análisis , Peces/metabolismo , Mercurio/análisis , Tracheophyta/química , Árboles/química , Animales , Geografía , Humanos , Estados Unidos
5.
Environ Sci Technol ; 46(5): 2574-82, 2012 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-22356354

RESUMEN

Using the infrastructure of the National Atmospheric Deposition Program (NADP), numerous measurements of radionuclide wet deposition over North America were made for 167 NADP sites before and after the Fukushima Dai-ichi Nuclear Power Station incident of March 12, 2011. For the period from March 8 through April 5, 2011, wet-only precipitation samples were collected by NADP and analyzed for fission-product isotopes within whole-water and filterable solid samples by the United States Geological Survey using gamma spectrometry. Variable amounts of (131)I, (134)Cs, or (137)Cs were measured at approximately 21% of sampled NADP sites distributed widely across the contiguous United States and Alaska. Calculated 1- to 2-week individual radionuclide deposition fluxes ranged from 0.47 to 5100 Becquerels per square meter during the sampling period. Wet deposition activity was small compared to measured activity already present in U.S. soil. NADP networks responded to this complex disaster, and provided scientifically valid measurements that are comparable and complementary to other networks in North America and Europe.


Asunto(s)
Cesio/análisis , Fisión Nuclear , Liberación de Radiactividad Peligrosa , Contaminantes Radiactivos del Agua/análisis , Atmósfera/química , Radioisótopos de Cesio/análisis , Filtración/instrumentación , Geografía , Japón , América del Norte , Agua
6.
J Environ Monit ; 13(11): 3156-67, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22009295

RESUMEN

The need for ambient gaseous ammonia (NH(3)) measurements has increased in the last decade as reactive NH(3) concentrations and deposition fluxes show little change even with tightening standards on nitrogen oxides (NO(x)) emissions. Currently, there are several networks developing methods for adding NH(3) measurements in the U.S. Gaseous NH(3) measurements will provide scientists and policymakers data which can be used to estimate ecosystem inputs, validate air quality models including trends and regional variability, and evaluate changes to the environment based on additional emission reduction requirements and estimates of critical nitrogen load exceedances. The passive samplers described in this paper were deployed in duplicate or triplicate and collocated with annular denuders or continuous instruments to determine their accuracy. The samplers assessed included the Adapted Low-Cost Passive High Absorption (ALPHA), Radiello(®), and Ogawa passive samplers. The median relative percent differences (MRPD) between the reference method and passive samplers for the ALPHA, Radiello(®) and Ogawa were -2.4%, -37% and -44%, respectively. The precision between duplicate samplers for the ALPHA and Ogawa samplers, was 7% and 6%, respectively. Triplicate Radiello(®) precision was assessed using the coefficient of variation (CV). The CV for the Radiello(®) samplers was 10%. This article discusses the statistical results from these studies.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Amoníaco/análisis , Monitoreo del Ambiente/métodos , Calibración , Monitoreo del Ambiente/instrumentación , Límite de Detección , Modelos Lineales , Modelos Químicos , Reproducibilidad de los Resultados , Estados Unidos
7.
Environ Monit Assess ; 164(1-4): 111-32, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19418237

RESUMEN

Precipitation chemistry and depth measurements obtained by the Canadian Air and Precipitation Monitoring Network (CAPMoN) and the US National Atmospheric Deposition Program/National Trends Network (NADP/NTN) were compared for the 10-year period 1995-2004. Colocated sets of CAPMoN and NADP instrumentation, consisting of precipitation collectors and rain gages, were operated simultaneously per standard protocols for each network at Sutton, Ontario and Frelighsburg, Ontario, Canada and at State College, PA, USA. CAPMoN samples were collected daily, and NADP samples were collected weekly, and samples were analyzed exclusively by each network's laboratory for pH, H(+), Ca(2+), Mg(2+), Na(+), K(+), NH4(+), Cl(-), NO3(-), and SO4(2-). Weekly and annual precipitation-weighted mean concentrations for each network were compared. This study is a follow-up to an earlier internetwork comparison for the period 1986-1993, published by Alain Sirois, Robert Vet, and Dennis Lamb in 2000. Median weekly internetwork differences for 1995-2004 data were the same to slightly lower than for data for the previous study period (1986-1993) for all analytes except NO3(-), SO4(2-), and sample depth. A 1994 NADP sampling protocol change and a 1998 change in the types of filters used to process NADP samples reversed the previously identified negative bias in NADP data for hydrogen-ion and sodium concentrations. Statistically significant biases (alpha = 0.10) for sodium and hydrogen-ion concentrations observed in the 1986-1993 data were not significant for 1995-2004. Weekly CAPMoN measurements generally are higher than weekly NADP measurements due to differences in sample filtration and field instrumentation, not sample evaporation, contamination, or analytical laboratory differences.


Asunto(s)
Monitoreo del Ambiente/métodos , Lluvia/química , Atmósfera , Canadá
9.
Sci Rep ; 9(1): 953, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700755

RESUMEN

The profound changes in global SO2 emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and Europe. Europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and East Asia. The uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. The agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget.

10.
Environ Pollut ; 233: 168-179, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29073524

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the authors due to the results of a detailed investigation of the data quality conducted by the Central Analytical Laboratory (CAL) after relocation to the University of Wisconsin (UW) ­ Wisconsin State Laboratory of Hygiene. Using a subset of the 30 samples with the highest bromide ion (Br-) concentrations, the CAL at UW found 6 samples that could not be verified or were incorrect. Because the extent of the incorrect data is unknown, the NADP Executive Committee voted unanimously in May 2019 to discontinue public access to these data, and they decided to sequester all Br- data prior to June 2018. These issues were not obvious to the authors when the paper was written. The authors apologize for the inconvenience caused.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Bromuros/análisis , Monitoreo del Ambiente , Nitratos/análisis , Óxidos de Nitrógeno/análisis , Nieve/química , Estados Unidos
11.
Environ Pollut ; 135(3): 347-61, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15749533

RESUMEN

A Seasonal Kendall Trend (SKT) test was applied to precipitation-weighted concentration data from 164 National Atmospheric Deposition Program National Trends Network (NADP/NTN) sites operational from 1985 to 2002. Analyses were performed on concentrations of ammonium, sulfate, nitrate, dissolved inorganic nitrogen (DIN, sum of nitrogen from nitrate and ammonium), and earth crustal cations (ECC, sum of calcium, magnesium, and potassium). Over the 18-year period, statistically significant (p< or =0.10) increases in ammonium concentrations occurred at 93 sites (58%), while just three sites had statistically significant ammonium decreases. Central and northern Midwestern states had the largest ammonium increases. The generally higher ammonium concentrations were accompanied by significant sulfate decreases (139 sites, 85%), and only one significant increase which occurred in Texas. In the west central United States there were significant nitrate increases (45 sites, 27%), while in the northeastern United States there were significant decreases (25 sites, 15%). Significant DIN decreases were observed in the northeastern United States (11 sites, 7%); elsewhere there were significant increases at 75 sites (46%). ECC decreased significantly at 65 sites (40%), predominantly in the central and southern United States, and increased at 11 sites (7%). The concentrations of sulfate, nitrate, and ammonium in precipitation have changed markedly over the time period studied. Such trends indicate changes in the mix of gases and particles scavenged by precipitation, possibly reflecting changes in emissions, atmospheric chemical transformations, and weather patterns.


Asunto(s)
Contaminantes Atmosféricos/análisis , Atmósfera/análisis , Amoníaco/análisis , Cationes/análisis , Monitoreo del Ambiente/métodos , Nitratos/análisis , Nitrógeno/análisis , Estaciones del Año , Sulfatos/análisis , Estados Unidos , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA