Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 574(7778): 404-408, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31578527

RESUMEN

Over the past two decades efforts to control malaria have halved the number of cases globally, yet burdens remain high in much of Africa and the elimination of malaria has not been achieved even in areas where extreme reductions have been sustained, such as South Africa1,2. Studies seeking to understand the paradoxical persistence of malaria in areas in which surface water is absent for 3-8 months of the year have suggested that some species of Anopheles mosquito use long-distance migration3. Here we confirm this hypothesis through aerial sampling of mosquitoes at 40-290 m above ground level and provide-to our knowledge-the first evidence of windborne migration of African malaria vectors, and consequently of the pathogens that they transmit. Ten species, including the primary malaria vector Anopheles coluzzii, were identified among 235 anopheline mosquitoes that were captured during 617 nocturnal aerial collections in the Sahel of Mali. Notably, females accounted for more than 80% of all of the mosquitoes that we collected. Of these, 90% had taken a blood meal before their migration, which implies that pathogens are probably transported over long distances by migrating females. The likelihood of capturing Anopheles species increased with altitude (the height of the sampling panel above ground level) and during the wet seasons, but variation between years and localities was minimal. Simulated trajectories of mosquito flights indicated that there would be mean nightly displacements of up to 300 km for 9-h flight durations. Annually, the estimated numbers of mosquitoes at altitude that cross a 100-km line perpendicular to the prevailing wind direction included 81,000 Anopheles gambiae sensu stricto, 6 million A. coluzzii and 44 million Anopheles squamosus. These results provide compelling evidence that millions of malaria vectors that have previously fed on blood frequently migrate over hundreds of kilometres, and thus almost certainly spread malaria over these distances. The successful elimination of malaria may therefore depend on whether the sources of migrant vectors can be identified and controlled.


Asunto(s)
Migración Animal/fisiología , Culicidae/fisiología , Malaria/transmisión , Mosquitos Vectores/fisiología , Viento , África , Animales , Culicidae/parasitología , Femenino , Mosquitos Vectores/parasitología
2.
Proc Biol Sci ; 290(2011): 20231581, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018102

RESUMEN

Mosquito-borne diseases (MBDs) threaten public health and food security globally. We provide the first biogeographic description of the African mosquito fauna (677 species) and the 151 mosquito-borne pathogens (MBPs) they transmit. While mosquito species richness agrees with expectations based on Africa's land surface, African arboviruses and mammalian plasmodia are more speciose than expected. Species assemblages of mosquitoes and MBPs similarly separate sub-Saharan Africa from North Africa, and those in West and Central Africa from eastern and southern Africa. Similarities between mosquitoes and MBPs in diversity and range size suggest that mosquitoes are key in delimiting the range of MBPs. With approximately 25% endemicity, approximately 50% occupying one to three countries and less than 5% occupying greater than 25 countries, the ranges of mosquitoes and MBPs are surprisingly small, suggesting that most MBPs are transmitted by a single mosquito species. Exceptionally widespread mosquito species feed on people and livestock, and most are high-altitude-windborne migrants. Likewise, widespread MBPs are transmitted among people or livestock by widespread mosquitoes, suggesting that adapting to people or livestock and to widespread mosquito species promote range expansion in MBPs. Range size may predict range expansion and emergence risk. We highlight key knowledge gaps that impede prediction and mitigation of future emergence of local and global MBDs.


Asunto(s)
Arbovirus , Culicidae , Animales , Humanos , África del Norte , Ganado , Mamíferos
3.
Malar J ; 19(1): 263, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32698842

RESUMEN

BACKGROUND: In the West African Sahel, mosquito reproduction is halted during the 5-7 month-long dry season, due to the absence of surface waters required for larval development. However, recent studies have suggested that both Anopheles gambiae sensu stricto (s.s.) and Anopheles arabiensis repopulate this region via migration from distant locations where larval sites are perennial. Anopheles coluzzii engages in more regional migration, presumably within the Sahel, following shifting resources correlating with the ever-changing patterns of Sahelian rainfall. Understanding mosquito migration is key to controlling malaria-a disease that continues to claim more than 400,000 lives annually, especially those of African children. Using tethered flight data of wild mosquitoes, the distribution of flight parameters were evaluated as indicators of long-range migrants versus appetitive flyers, and the species specific seasonal differences and gonotrophic states compared between two flight activity modalities. Morphometrical differences were evaluated in the wings of mosquitoes exhibiting high flight activity (HFA) vs. low flight activity (LFA). METHODS: A novel tethered-flight assay was used to characterize flight in the three primary malaria vectors- An. arabiensis, An. coluzzii and An. gambiae s.s. The flights of tethered wild mosquitoes were audio-recorded from 21:00 h to 05:00 h in the following morning and three flight aptitude indices were examined: total flight duration, longest flight bout, and the number of flight bouts during the assay. RESULTS: The distributions of all flight indices were strongly skewed to the right, indicating that the population consisted of a majority of low-flight activity (LFA) mosquitoes and a minority of high-flight activity (HFA) mosquitoes. The median total flight was 586 s and the maximum value was 16,110 s (~ 4.5 h). In accordance with recent results, flight aptitude peaked in the wet season, and was higher in gravid females than in non-blood-fed females. Flight aptitude was also found to be higher in An. coluzzii compared to An. arabiensis, with intermediate values in An. gambiae s.s., but displaying no statistical difference. Evaluating differences in wing size and shape between LFA individuals and HFA ones, the wing size of HFA An. coluzzii was larger than that of LFAs during the wet season-its length was wider than predicted by allometry alone, indicating a change in wing shape. No statistically significant differences were found in the wing size/shape of An. gambiae s.s. or An. arabiensis. CONCLUSIONS: The partial agreement between the tethered flight results and recent results based on aerial sampling of these species suggest a degree of discrimination between appetitive flyers and long-distance migrants although identifying HFAs as long-distance migrants is not recommended without further investigation.


Asunto(s)
Migración Animal , Anopheles/fisiología , Vuelo Animal , Malaria/transmisión , Mosquitos Vectores/fisiología , Animales , Variación Biológica Individual , Estaciones del Año , Especificidad de la Especie
4.
J Exp Biol ; 219(Pt 11): 1675-88, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27207644

RESUMEN

The African malaria mosquitoes Anopheles gambiae and Anopheles coluzzii range over forests and arid areas, where they withstand dry spells and months-long dry seasons, suggesting variation in their desiccation tolerance. We subjected a laboratory colony (G3) and wild Sahelian mosquitoes during the rainy and dry seasons to desiccation assays. The thoracic spiracles and amount and composition of cuticular hydrocarbons (CHCs) of individual mosquitoes were measured to determine the effects of these traits on desiccation tolerance. The relative humidity of the assay, body water available, rate of water loss and water content at death accounted for 88% of the variation in desiccation tolerance. Spiracle size did not affect the rate of water loss or desiccation tolerance of the colony mosquitoes, as was the case for the total CHCs. However, six CHCs accounted for 71% of the variation in desiccation tolerance and three accounted for 72% of the variation in the rate of water loss. Wild A. coluzzii exhibited elevated desiccation tolerance during the dry season. During that time, relative thorax and spiracle sizes were smaller than during the rainy season. A smaller spiracle size appeared to increase A. coluzzii's desiccation tolerance, but was not statistically significant. Seasonal changes in CHC composition were detected in Sahelian A. coluzzii Stepwise regression models suggested the effect of particular CHCs on desiccation tolerance. In conclusion, the combination of particular CHCs along with the total amount of CHCs is a primary mechanism conferring desiccation tolerance in A. coluzzii, while variation in spiracle size might be a secondary mechanism.


Asunto(s)
Adaptación Fisiológica , Estructuras Animales/anatomía & histología , Anopheles/anatomía & histología , Anopheles/fisiología , Desecación , Hidrocarburos/análisis , Integumento Común/anatomía & histología , Animales , Agua Corporal/química , Peso Corporal , Femenino , Humedad , Tamaño de los Órganos , Análisis de Regresión , Estaciones del Año , Tórax/anatomía & histología , Pérdida Insensible de Agua/fisiología , Alas de Animales/anatomía & histología
5.
J Med Entomol ; 51(1): 27-38, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24605449

RESUMEN

Changes in spatial distribution of mosquitoes over time in a Sahelian village were studied to understand the sources of the mosquitoes during the dry season when no larval sites are found. At that time, the sources of Anopheles gambiae Giles may be local shelters used by aestivating mosquitoes or migrants from distant populations. The mosquito distribution was more aggregated during the dry season, when few houses had densities 7- to 24-fold higher than expected. The high-density houses during the dry season differed from those of the wet season. Most high-density houses during the dry season changed between years, yet their vicinity was rather stable. Scan statistics confirmed the presence of one or two adjacent hotspots in the dry season, usually found on one edge of the village. These hotspots shifted between the early and late dry season. During the wet season, the hotspots were relatively stable near the main larval site. The locations of the hotspots in the wet season and early and late dry season were similar between years. Season-specific, stable, and focal hotspots are inconsistent with the predictions based on the arrival of migrants from distant localities during the dry season, but are consistent with the predictions based on local shelters used by aestivating mosquitoes. Targeting hotspots in Sahelian villages for vector control may not be effective because the degree of aggregation is moderate, the hotspots are not easily predicted, and they are not the sources of the population. However, targeting the dry-season shelters may be highly cost-effective, once they can be identified and predicted.


Asunto(s)
Anopheles/fisiología , Estivación , Animales , Femenino , Vivienda , Humanos , Masculino , Malí , Densidad de Población , Dinámica Poblacional , Estaciones del Año
6.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854158

RESUMEN

Invasive insects threaten ecosystem stability, public health, and food security. Documenting newly invasive species and understanding how they reach into new territories, establish populations, and interact with other species remain vitally important. Here, we report on the invasion of the South American leafhopper, Curtara insularis into Africa, where it has established populations in Ghana, encroaching inland at least 350 km off the coast. Importantly, 80% of the specimens collected were intercepted between 160 and 190 m above ground. Further, the fraction of this species among all insects collected was also higher at altitude, demonstrating its propensity to engage in high-altitude windborne dispersal. Its aerial densities at altitude translate into millions of migrants/km over a year, representing massive propagule pressure. Given the predominant south-westerly winds, these sightings suggest an introduction of C. insularis into at least one of the Gulf of Guinea ports. To assess the contribution of windborne dispersal to its spread in a new territory, we examine records of C. insularis range-expansion in the USA. Reported first in 2004 from central Florida, it reached north Florida (Panhandle) by 2008-2011 and subsequently spread across the southeastern and south-central US. Its expansion fits a "diffusion-like" process with 200-300 km long "annual displacement steps"-a pattern consistent with autonomous dispersal rather than vehicular transport. Most "steps" are consistent with common wind trajectories from the nearest documented population, assuming 2-8 hours of wind-assisted flight at altitude. Curtara insularis has been intercepted at US ports and on trucks. Thus, it uses multiple dispersal modalities, yet its rapid overland spread is better explained by its massive propagule pressure linked with its high-altitude windborne dispersal. We propose that high-altitude windborne dispersal is common yet under-appreciated in invasive insect species.

7.
medRxiv ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37398491

RESUMEN

The spread of SARS-CoV-2 cannot be well monitored and understood in areas without capacity for effective disease surveillance. Countries with a young population will have disproportionately large numbers of asymptomatic or pauci-symptomatic infections, further hindering detection of infection in the population. Sero-surveillance on a country-wide scale by trained medical professionals may be limited in scope in resource limited setting such as Mali. Novel ways of broadly sampling the human population in a non-invasive method would allow for large-scale surveillance at a reduced cost. Here we evaluate the collection of naturally bloodfed mosquitoes to test for human anti-SARS-CoV-2 antibodies in the laboratory and at five field locations in Mali. Immunoglobulin-G antibodies were found to be readily detectable within the mosquito bloodmeals by a bead-based immunoassay at least through 10 hours post-feeding with high sensitivity (0.900 ± 0.059) and specificity (0.924 ± 0.080), respectively, indicating that most blood-fed mosquitoes collected indoors during early morning hours (and thus, have likely fed the previous night) are viable samples for analysis. We find that reactivity to four SARS-CoV-2 antigens rose during the pandemic from pre-pandemic levels. Consistent with other sero-surveillance studies in Mali, crude seropositivity of blood sampled via mosquitoes was 6.3% in October/November 2020 over all sites, and increased to 25.1% overall, with the town closest to Bamako reaching 46.7% in February of 2021. Mosquito bloodmeals a viable target for conventional immunoassays, and therefore country-wide sero-surveillance of human diseases (both vector-borne and non-vector-borne) is attainable in areas where human-biting mosquitoes are common, and is an informative, cost-effective, non-invasive sampling option.

8.
J Med Entomol ; 60(4): 698-707, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37094808

RESUMEN

Knowledge of insect dispersal is relevant to the control of agricultural pests, vector-borne transmission of human and veterinary pathogens, and insect biodiversity. Previous studies in a malaria endemic area of the Sahel region in West Africa revealed high-altitude, long-distance migration of insects and various mosquito species. The objective of the current study was to assess whether similar behavior is exhibited by mosquitoes and other insects around the Lake Victoria basin region of Kenya in East Africa. Insects were sampled monthly from dusk to dawn over 1 year using sticky nets suspended on a tethered helium-filled balloon. A total of 17,883 insects were caught on nets tethered at 90, 120, and 160 m above ground level; 818 insects were caught in control nets. Small insects (<0.5 cm, n = 15,250) were predominant regardless of height compared with large insects (>0.5 cm, n = 2,334) and mosquitoes (n = 299). Seven orders were identified; dipteran was the most common. Barcoding molecular assays of 184 mosquitoes identified 7 genera, with Culex being the most common (65.8%) and Anopheles being the least common (5.4%). The survival rate of mosquitoes, experimentally exposed to high-altitude overnight, was significantly lower than controls maintained in the laboratory (19% vs. 85%). There were no significant differences in mosquito survival and oviposition rate according to capture height. These data suggest that windborne dispersal activity of mosquito vectors of malaria and other diseases occurs on a broad scale in sub-Saharan Africa.


Asunto(s)
Anopheles , Malaria , Femenino , Humanos , Animales , Viento , Altitud , África Oriental , Mosquitos Vectores , Control de Mosquitos
9.
Front Epidemiol ; 3: 1243691, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38455906

RESUMEN

Background: The spread of SARS-CoV-2 cannot be well monitored and understood in areas without capacity for effective disease surveillance. Countries with a young population will have disproportionately large numbers of asymptomatic or pauci-symptomatic infections, further hindering detection of infection. Sero-surveillance on a country-wide scale by trained medical professionals may be limited in a resource-limited setting such as Mali. Novel ways of broadly sampling the human population in a non-invasive method would allow for large-scale surveillance at a reduced cost. Approach: Here we evaluate the collection of naturally blood-fed mosquitoes to test for human anti-SARS-CoV-2 antibodies in the laboratory and at five field locations in Mali. Results: Immunoglobulin-G antibodies to multiple SARS-CoV-2 antigens were readily detected in mosquito bloodmeals by bead-based immunoassay through at least 10 h after feeding [mean sensitivity of 0.92 (95% CI 0.78-1) and mean specificity of 0.98 (95% CI 0.88-1)], indicating that most blood-fed mosquitoes collected indoors during early morning hours (and likely to have fed the previous night) are viable samples for analysis. We found that reactivity to four SARS-CoV-2 antigens rose during the pandemic from pre-pandemic levels. The crude seropositivity of blood sampled via mosquitoes was 6.3% in October and November 2020 across all sites, and increased to 25.1% overall by February 2021, with the most urban site reaching 46.7%, consistent with independent venous blood-based sero-surveillance estimates. Conclusions: We have demonstrated that using mosquito bloodmeals, country-wide sero-surveillance of human diseases (both vector-borne and non-vector-borne) is possible in areas where human-biting mosquitoes are common, offering an informative, cost-effective, and non-invasive sampling option.

10.
J Exp Biol ; 215(Pt 12): 2013-21, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22623189

RESUMEN

Malaria in Africa is vectored primarily by the Anopheles gambiae complex. Although the mechanisms of population persistence during the dry season are not yet known, targeting dry season mosquitoes could provide opportunities for vector control. In the Sahel, it appears likely that M-form A. gambiae survive by aestivation (entering a dormant state). To assess the role of eco-physiological changes associated with dry season survival, we measured body size, flight activity and metabolic rate of wild-caught mosquitoes throughout 1 year in a Sahelian locality, far from permanent water sources, and at a riparian location adjacent to the Niger River. We found significant seasonal variation in body size at both the Sahelian and riparian sites, although the magnitude of the variation was greater in the Sahel. For flight activity, significant seasonality was only observed in the Sahel, with increased flight activity in the wet season when compared with that just prior to and throughout the dry season. Whole-organism metabolic rate was affected by numerous biotic and abiotic factors, and a significant seasonal component was found at both locations. However, assay temperature accounted completely for seasonality at the riparian location, while significant seasonal variation remained after accounting for all measured variables in the Sahel. Interestingly, we did not find that mean metabolic rate was lowest during the dry season at either location, contrary to our expectation that mosquitoes would conserve energy and increase longevity by reducing metabolism during this time. These results indicate that mosquitoes may use mechanisms besides reduced metabolic rate to enable survival during the Sahelian dry season.


Asunto(s)
Anopheles/anatomía & histología , Anopheles/fisiología , Malaria/parasitología , África , Animales , Metabolismo Basal , Tamaño Corporal , Vuelo Animal , Estaciones del Año , Temperatura
11.
Nat Ecol Evol ; 6(11): 1687-1699, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36216903

RESUMEN

Data suggest that the malaria vector mosquito Anopheles coluzzii persists during the dry season in the Sahel through a dormancy mechanism known as aestivation; however, the contribution of aestivation compared with alternative strategies such as migration is unknown. Here we marked larval Anopheles mosquitoes in two Sahelian villages in Mali using deuterium (2H) to assess the contribution of aestivation to persistence of mosquitoes through the seven-month dry season. After an initial enrichment period, 33% of An. coluzzii mosquitoes were strongly marked. Seven months following enrichment, multiple analysis methods supported the ongoing presence of marked mosquitoes, compatible with the prediction that the fraction of marked mosquitoes should remain stable throughout the dry season if local aestivation is occurring. The results suggest that aestivation is a major persistence mechanism of An. coluzzii in the Sahel, contributing at least 20% of the adults at the onset of rains. This persistence strategy could influence mosquito control and malaria elimination campaigns.


Asunto(s)
Anopheles , Malaria , Animales , Estivación , Estaciones del Año , Mosquitos Vectores
12.
Front Epidemiol ; 2: 1001782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38455321

RESUMEN

Recent studies have reported Anopheles mosquitoes captured at high-altitude (40-290 m above ground) in the Sahel. Here, we describe this migration modality across genera and species of African Culicidae and examine its implications for disease transmission and control. As well as Anopheles, six other genera-Culex, Aedes, Mansonia, Mimomyia, Lutzia, and Eretmapodites comprised 90% of the 2,340 mosquitoes captured at altitude. Of the 50 molecularly confirmed species (N = 2,107), 33 species represented by multiple specimens were conservatively considered high-altitude windborne migrants, suggesting it is a common migration modality in mosquitoes (31-47% of the known species in Mali), and especially in Culex (45-59%). Overall species abundance varied between 2 and 710 specimens/species (in Ae. vittatus and Cx. perexiguus, respectively). At altitude, females outnumbered males 6:1, and 93% of the females have taken at least one blood meal on a vertebrate host prior to their departure. Most taxa were more common at higher sampling altitudes, indicating that total abundance and diversity are underestimated. High-altitude flight activity was concentrated between June and November coinciding with availability of surface waters and peak disease transmission by mosquitoes. These hallmarks of windborne mosquito migration bolster their role as carriers of mosquito-borne pathogens (MBPs). Screening 921 mosquitoes using pan-Plasmodium assays revealed that thoracic infection rate in these high-altitude migrants was 2.4%, providing a proof of concept that vertebrate pathogens are transported by windborne mosquitoes at altitude. Fourteen of the 33 windborne mosquito species had been reported as vectors to 25 MBPs in West Africa, which represent 32% of the MBPs known in that region and include those that inflict the heaviest burden on human and animal health, such as malaria, yellow fever, dengue, and Rift Valley fever. We highlight five arboviruses that are most likely affected by windborne mosquitoes in West Africa: Rift Valley fever, O'nyong'nyong, Ngari, Pangola, and Ndumu. We conclude that the study of windborne spread of diseases by migrating insects and the development of surveillance to map the sources, routes, and destinations of vectors and pathogens is key to understand, predict, and mitigate existing and new threats of public health.

13.
BMC Evol Biol ; 11: 184, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21711542

RESUMEN

BACKGROUND: Anopheles gambiae mates in flight at particular mating sites over specific landmarks known as swarm markers. The swarms are composed of males; females typically approach a swarm, and leave in copula. This mating aggregation looks like a lek, but appears to lack the component of female choice. To investigate the possible mechanisms promoting the evolution of swarming in this mosquito species, we looked at the variation in mating success between swarms and discussed the factors that structure it in light of the three major lekking models, known as the female preference model, the hotspot model, and the hotshot model. RESULTS: We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the per capita mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site. CONCLUSIONS: Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of An. gambiae and discussed possible factors that account for its variation. We found that swarms of An. gambiae conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the An. gambiae mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble mating competition.


Asunto(s)
Anopheles/fisiología , Conducta Sexual Animal , Animales , Anopheles/genética , Conducta Animal , Femenino , Masculino
14.
J Exp Biol ; 214(Pt 14): 2345-53, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21697426

RESUMEN

In the Sahel, the Anopheles gambiae complex consists of Anopheles arabiensis and the M and S molecular forms of A. gambiae sensu stricto. However, the composition of these malaria vectors varies spatially and temporally throughout the region and is thought to be linked to environmental factors such as rainfall, larval site characteristics and duration of the dry season. To examine possible physiological divergence between these taxa, we measured metabolic rates of mosquitoes during the wet season in a Sahelian village in Mali. To our knowledge, this study provides the first measurements of metabolic rates of A. gambiae and A. arabiensis in the field. The mean metabolic rate of A. arabiensis was higher than that of M-form A. gambiae when accounting for the effects of female gonotrophic status, temperature and flight activity. However, after accounting for their difference in body size, no significant difference in metabolic rate was found between these two species (whilst all other factors were found to be significant). Thus, body size may be a key character that has diverged in response to ecological differences between these two species. Alternatively, these species may display additional differences in metabolic rate only during the dry season. Overall, our results indicate that changes in behavior and feeding activity provide an effective mechanism for mosquitoes to reduce their metabolic rate, and provide insight into the possible strategies employed by aestivating individuals during the dry season. We hypothesize that female mosquitoes switch to sugar feeding while in dormancy because of elevated metabolism associated with blood digestion.


Asunto(s)
Anopheles/metabolismo , Metabolismo Basal , Población Rural , Análisis de Varianza , Animales , Anopheles/anatomía & histología , Anopheles/clasificación , Tamaño Corporal , Metabolismo Energético/fisiología , Femenino , Masculino , Malí , Especificidad de la Especie , Alas de Animales/anatomía & histología
15.
Malar J ; 10: 151, 2011 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-21645385

RESUMEN

BACKGROUND: Persistence of African anophelines throughout the long dry season (4-8 months) when no surface waters are available remains one of the enduring mysteries of medical entomology. Recent studies demonstrated that aestivation (summer diapause) is one mechanism that allows the African malaria mosquito, Anopheles gambiae, to persist in the Sahel. However, migration from distant localities - where reproduction continues year-round - might also be involved. METHODS: To assess the contribution of aestivating adults to the buildup of populations in the subsequent wet season, two villages subjected to weekly pyrethrum sprays throughout the dry season were compared with two nearby villages, which were only monitored. If aestivating adults are the main source of the subsequent wet-season population, then the subsequent wet-season density in the treated villages will be lower than in the control villages. Moreover, since virtually only M-form An. gambiae are found during the dry season, the reduction should be specific to the M form, whereas no such difference is predicted for S-form An. gambiae or Anopheles arabiensis. On the other hand, if migrants arriving with the first rain are the main source, no differences between treated and control villages are expected across all members of the An. gambiae complex. RESULTS: The wet-season density of the M form in treated villages was 30% lower than that in the control (P < 10-4, permutation test), whereas no significant differences were detected in the S form or An. arabiensis. CONCLUSIONS: These results support the hypothesis that the M form persist in the arid Sahel primarily by aestivation, whereas the S form and An. arabiensis rely on migration from distant locations. Implications for malaria control are discussed.


Asunto(s)
Anopheles/fisiología , Clima Desértico , Estaciones del Año , África del Sur del Sahara , Migración Animal , Animales , Anopheles/crecimiento & desarrollo , Femenino , Humanos , Masculino
16.
J Med Entomol ; 58(1): 343-349, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-32667040

RESUMEN

Recent results of high-altitude windborne mosquito migration raised questions about the viability of these mosquitoes despite ample evidence that many insect species, including other dipterans, have been known to migrate regularly over tens or hundreds of kilometers on high-altitude winds and retain their viability. To address these concerns, we subjected wild Anopheles gambiae s.l. Giles mosquitoes to a high-altitude survival assay, followed by oviposition (egg laying) and blood feeding assays. Despite carrying out the survival assay under exceptionally harsh conditions that probably provide the lowest survival potential following high altitude flight, a high proportion of the mosquitoes survived for 6- and even 11-h assay durations at 120- to 250-m altitudes. Minimal differences in egg laying success were noted between mosquitoes exposed to high altitude survival assay and those kept near the ground. Similarly, minimal differences were found in the female's ability to take an additional bloodmeal after oviposition between these groups. We conclude that similar to other high-altitude migrating insects, mosquitoes are able to withstand extended high-altitude flight and subsequently reproduce and transmit pathogens by blood feeding on new hosts.


Asunto(s)
Migración Animal , Anopheles/fisiología , Conducta Alimentaria , Mosquitos Vectores/fisiología , Oviposición , Sobrevida , Altitud , Animales , Femenino , Malaria , Malí , Viento
17.
Parasit Vectors ; 14(1): 515, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620217

RESUMEN

BACKGROUND: The surveillance and control of mosquito-borne diseases is dependent upon understanding the bionomics and distribution of the vectors. Most studies of mosquito assemblages describe species abundance, richness and composition close to the ground defined often by only one sampling method. In this study, we assessed Australian mosquito species near the ground and in the sub-canopy using two traps baited with a variety of lures. METHODS: Mosquitoes were sampled using a 4 × 4 Latin square design at the Cattana Wetlands, Australia from February to April 2020, using passive box traps with octenol and carbon dioxide and three variations of a sticky net trap (unbaited, and baited with octenol or octenol and carbon dioxide). The traps were deployed at two different heights: ground level (≤ 1 m above the ground) and sub-canopy level (6 m above the ground). RESULTS: In total, 27 mosquito species were identified across the ground and sub-canopy levels from the different traps. The abundance of mosquitoes at the ground level was twofold greater than at the sub-canopy level. While the species richness at ground and sub-canopy levels was not significantly different, species abundance varied by the collection height. CONCLUSIONS: The composition of mosquito population assemblages was correlated with the trap types and heights at which they were deployed. Coquillettidia species, which prefer feeding on birds, were mainly found in the sub-canopy whereas Anopheles farauti, Aedes vigilax and Mansonia uniformis, which have a preference for feeding on large mammals, were predominantly found near the ground. In addition to trap height, environmental factors and mosquito bionomic characteristics (e.g. larval habitat, resting behaviour and host blood preferences) may explain the vertical distribution of mosquitoes. This information is useful to better understand how vectors may acquire and transmit pathogens to hosts living at different heights.


Asunto(s)
Distribución Animal , Culicidae/fisiología , Ecosistema , Mosquitos Vectores/fisiología , Aedes/fisiología , Animales , Anopheles/fisiología , Australia , Culex/fisiología , Culicidae/clasificación , Femenino , Masculino , Control de Mosquitos/métodos , Bosque Lluvioso , Árboles/parasitología , Humedales
18.
Methods Ecol Evol ; 12(6): 1008-1016, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34249305

RESUMEN

Current mark-release-recapture methodologies are limited in their ability to address complex problems in vector biology, such as studying multiple groups overlapping in space and time. Additionally, limited mark retention, reduced post-marking survival and the large effort in marking, collection and recapture all complicate effective insect tracking.We have developed and evaluated a marking method using a fluorescent dye (SmartWater®) combined with synthetic DNA tags to informatively and efficiently mark adult mosquitoes using an airbrush pump and nebulizer. Using a handheld UV flashlight, the fluorescent marking enabled quick and simple initial detection of recaptures in a field-ready and non-destructive approach that when combined with an extraction-free PCR on individual mosquito legs provides potentially unlimited marking information.This marking, first tested in the laboratory with Anopheles gambiae s.l. mosquitoes, did not affect survival (median ages 24-28 days, p-adj > 0.25), oviposition (median eggs/female of 28.8, 32.5, 33.3 for water, green, red dyes, respectively, p-adj > 0.44) or Plasmodium competence (mean oocysts 5.56-10.6, p-adj > 0.95). DNA and fluorescence had 100% retention up to 3 weeks (longest time point tested) with high intensity, indicating marks would persist longer.We describe a novel, simple, no/low-impact and long-lasting marking method that allows separation of multiple insect subpopulations by combining unlimited length and sequence variation in the synthetic DNA tags. This method can be readily deployed in the field for marking multiple groups of mosquitoes or other insects.

19.
J Med Entomol ; 47(5): 769-77, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20939369

RESUMEN

Reduced survival and future reproduction due to of current reproduction is a trade-off known as the cost of reproduction. Surprisingly, only a few studies have assessed the cost of reproduction in arthropod disease vectors, despite its effect on longevity, and thus on vectorial capacity. We evaluated the cost of reproduction on survival of Anopheles gambiae Giles by comparing mosquitoes that were denied exposure to the other sex, hereafter named virgins, and those that were allowed exposure to the other sex and mating, hereafter named mated. Merely 6 d of exposure to females with mating activity reduced male survival from a median of 17 d in virgins to 15 d in mated, indicating that male mating cost is substantial. The increase in mortality of mated males began several days after the exposure to females ended, indicating that mating is not associated with immediate mortality risk. Notably, body size was negatively correlated with male mortality in mated males, but not in virgins. The rate of insemination declined after 4 d of exposure to females, indicating that male mating capacity is limited and further supporting the hypothesis that mating is costly for males. Consistent with previous studies, female survival on sugar alone (median=16 d) was shorter than on blood and sugar (median=19 d), regardless if she was mated or virgin. Overall, survival of mated females was lower than that of virgins on a diet of blood and sugar, but no difference was found on a diet of sugar only. However, the cost of reproduction in females remains ambiguous because the difference in survival between virgin and mated females was driven by the difference between virgin (median=19 d) and uninseminated females exposed to males (median=17 d), rather than between virgin and inseminated females (median=19 d). Accordingly, sperm and seminal fluid, egg development, and oviposition have negligible cost in terms of female survival. Only exposure to males without insemination decreased female survival. Nonetheless, if exposure to males under natural conditions is also associated with reduced survival, it might explain why females remain monogamous.


Asunto(s)
Anopheles/fisiología , Animales , Tamaño Corporal , Femenino , Longevidad , Masculino , Reproducción/fisiología , Caracteres Sexuales , Conducta Sexual Animal
20.
Parasit Vectors ; 13(1): 412, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32787948

RESUMEN

BACKGROUND: How anopheline mosquitoes persist through the long dry season in Africa remains a gap in our understanding of these malaria vectors. To span this period in locations such as the Sahelian zone of Mali, mosquitoes must either migrate to areas of permanent water, recolonize areas as they again become favorable, or survive in harsh conditions including high temperatures, low humidity, and an absence of surface water (required for breeding). Adult mosquitoes surviving through this season must dramatically extend their typical lifespan (averaging 2-3 weeks) to 7 months. Previous work has found evidence that the malaria mosquito An. coluzzii, survives over 200 days in the wild between rainy seasons in a presumed state of aestivation (hibernation), but this state has so far not been replicated in laboratory conditions. The inability to recapitulate aestivation in the lab hinders addressing key questions such as how this state is induced, how it affects malaria vector competence, and its impact on disease transmission. METHODS: In effort to induce aestivation, we held laboratory mosquitoes in climate-controlled incubators with a range of conditions that adjusted humidity (40-85% RH), temperature (18-27 °C), and light conditions (8-12 h of light) and evaluated their survivorship. These conditions were chosen to mimic the late rainy and dry seasons as well as relevant extremes these mosquitoes may experience during aestivation. RESULTS: We found that by priming mosquitoes in conditions simulating the late wet season in Mali, and maintaining mosquitoes in reduced light/temperature, mean mosquito survival increased from 18.34 ± 0.65 to 48.02 ± 2.87 days, median survival increased from 19 (95% CI 17-21) to 50 days (95% CI 40-58), and the maximum longevity increased from 38 to 109 days (P-adj < 0.001). While this increase falls short of the 200 + day survival seen in field mosquitoes, this extension is substantially higher than previously found through environmental or dietary modulation and is hard to reconcile with states other than aestivation. This finding will provide a platform for future characterization of this state, and allow for comparison to field collected samples.


Asunto(s)
Anopheles/fisiología , Estivación/fisiología , África/epidemiología , Animales , Humedad , Laboratorios , Longevidad , Malaria/transmisión , Modelos Animales , Mosquitos Vectores/fisiología , Estaciones del Año , Análisis de Supervivencia , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA