Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(37): E8634-E8641, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30139915

RESUMEN

Insects use a diverse array of specialized terpene metabolites as pheromones in intraspecific interactions. In contrast to plants and microbes, which employ enzymes called terpene synthases (TPSs) to synthesize terpene metabolites, limited information from few species is available about the enzymatic mechanisms underlying terpene pheromone biosynthesis in insects. Several stink bugs (Hemiptera: Pentatomidae), among them severe agricultural pests, release 15-carbon sesquiterpenes with a bisabolene skeleton as sex or aggregation pheromones. The harlequin bug, Murgantia histrionica, a specialist pest of crucifers, uses two stereoisomers of 10,11-epoxy-1-bisabolen-3-ol as a male-released aggregation pheromone called murgantiol. We show that MhTPS (MhIDS-1), an enzyme unrelated to plant and microbial TPSs but with similarity to trans-isoprenyl diphosphate synthases (IDS) of the core terpene biosynthetic pathway, catalyzes the formation of (1S,6S,7R)-1,10-bisaboladien-1-ol (sesquipiperitol) as a terpene intermediate in murgantiol biosynthesis. Sesquipiperitol, a so-far-unknown compound in animals, also occurs in plants, indicating convergent evolution in the biosynthesis of this sesquiterpene. RNAi-mediated knockdown of MhTPS mRNA confirmed the role of MhTPS in murgantiol biosynthesis. MhTPS expression is highly specific to tissues lining the cuticle of the abdominal sternites of mature males. Phylogenetic analysis suggests that MhTPS is derived from a trans-IDS progenitor and diverged from bona fide trans-IDS proteins including MhIDS-2, which functions as an (E,E)-farnesyl diphosphate (FPP) synthase. Structure-guided mutagenesis revealed several residues critical to MhTPS and MhFPPS activity. The emergence of an IDS-like protein with TPS activity in M. histrionica demonstrates that de novo terpene biosynthesis evolved in the Hemiptera in an adaptation for intraspecific communication.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Heterópteros/metabolismo , Proteínas de Insectos/metabolismo , Feromonas/metabolismo , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/genética , Animales , Vías Biosintéticas/genética , Heterópteros/enzimología , Heterópteros/genética , Proteínas de Insectos/química , Proteínas de Insectos/genética , Masculino , Modelos Moleculares , Estructura Molecular , Feromonas/química , Filogenia , Fosfatos de Poliisoprenilo/metabolismo , Dominios Proteicos , Sesquiterpenos/química , Estereoisomerismo
2.
J Chem Ecol ; 45(2): 187-197, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30267360

RESUMEN

Insects use a wide range of structurally diverse pheromones for intra-specific communication. Compounds in the class of terpenes are emitted as sex, aggregation, alarm, or trail pheromones. Despite the common occurrence of terpene pheromones in different insect lineages, their origin from dietary host plant precursors or de novo biosynthetic pathways often remains unknown. Several stink bugs (Hemiptera: Pentatomidae) release bisabolene-type sesquiterpenes for aggregation and mating. Here we provide evidence for de novo biosynthesis of the sex pheromone trans-/cis-(Z)-α-bisabolene epoxide of the Southern green stink bug, Nezara viridula. We show that an enzyme (NvTPS) related to isoprenyl diphosphate synthases (IDSs) of the core terpene metabolic pathway functions as a terpene synthase (TPS), which converts the general intermediate (E,E)-farnesyl diphosphate (FPP) to the putative pheromone precursor (+)-(S,Z)-α-bisabolene in vitro and in protein lysates. A second identified IDS-type protein (NvFPPS) makes the TPS substrate (E,E)-FPP and functions as a bona fide FPP synthase. NvTPS is highly expressed in male epidermal tissue associated with the cuticle of ventral sternites, which is in agreement with the male specific release of the pheromone from glandular cells in this tissue. Our study supports findings of the function of similar TPS enzymes in the biosynthesis of aggregation pheromones from the pine engraver beetle Ips pini, the striped flea beetle Phyllotreta striolata, and the harlequin bug Murgantia histrionica, and hence provides growing evidence for the evolution of terpene de novo biosynthesis by IDS-type TPS families in insects.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Heterópteros/enzimología , Proteínas de Insectos/metabolismo , Atractivos Sexuales/metabolismo , Transferasas Alquil y Aril/genética , Animales , Femenino , Cromatografía de Gases y Espectrometría de Masas , Proteínas de Insectos/genética , Masculino , ARN/aislamiento & purificación , ARN/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Atractivos Sexuales/química , Estereoisomerismo
3.
J Chem Ecol ; 45(2): 198, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30710237

RESUMEN

The original version of this article unfortunately contained a mistake. Under the heading "Insects" in "Methods and Materials" the sentence "A colony of N. viridula originated with field collections near Tifton, Georgia, USA" is incorrect.

4.
Insects ; 8(2)2017 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-28587099

RESUMEN

The harlequin bug, Murgantia histrionica (Hahn), is an agricultural pest in the continental United States, particularly in southern states. Reliable gene sequence data are especially useful to the development of species-specific, environmentally friendly molecular biopesticides and effective biolures for this insect. Here, mRNAs were sampled from whole insects at the 2nd and 4th nymphal instars, as well as sexed adults, and sequenced using Illumina RNA-Seq technology. A global assembly of these data identified 72,540 putative unique transcripts bearing high levels of similarity to transcripts identified in other taxa, with over 99% of conserved single-copy orthologs among insects being detected. Gene ontology and protein family analyses were conducted to explore the functional potential of the harlequin bug's gene repertoire, and phylogenetic analyses were conducted on gene families germane to xenobiotic detoxification, including glutathione S-transferases, carboxylesterases and cytochrome P450s. Genic content in harlequin bug was compared with that of the closely related invasive pest, the brown marmorated stink bug, Halyomorpha halys (Stål). Quantitative analyses of harlequin bug gene expression levels, experimentally validated using quantitative real-time PCR, identified genes differentially expressed between life stages and/or sexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA