Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Analyst ; 148(20): 5243-5254, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37727114

RESUMEN

Digital PCRs (dPCRs) are widely used methods for the detection and quantification of rare abundant sequences relevant to fields such as liquid biopsy or oncology. In order to increase the information content and save valuable sample materials, there is a significant need for digital multiplexing methods that are easy to establish, analyse, and interpret, and ideally allow the usage of existing lab equipment. Herein, we present a novel reporter emission multiplexing approach for the digital PCR method (REM-dPCR), which meets these requirements. It further increases the multiplexing capacity of commercial dPCR devices. For example, we present a stepwise increase in multiplexing degrees from a monochrome two-plex assay in one detection channel to a six-plex REM-dPCR assay in a three-color dPCR device for KRAS/BRAF single nucleotide polymorphism (SNP) target sequences. The guidelines for the REM-dPCR design are presented, and the process from duplex to six-plex assay establishment, taking into account the target sequence-dependent effects on assay performance, is discussed. Furthermore, the assay-specific, sensitive and precise quantification of different fractions of KRAS mutant and wild-type DNA sequences in different ratios is demonstrated. To increase the device capacitance and the degree of multiplexing, the REM-dPCR uses the advantage of n target-independent reporter molecules in combination with target sequence-specific mediator probes. Different reporter types are labelled with fluorophores of different signal intensities but not necessarily different emission spectra. This leads to the generation of n independent single-positive populations in the dataspace, created by k detection channels, whereby n > k and n ≥ 2. By usage of target-independent but population-specific reporter types, a fixed set of six optimized signalling molecules could be defined. This reporter set enables the robust generation and precise differentiation of multiple fluorescence signals in dPCRs and can be transferred to new target panels. The set which enables stable signal generation and differentiation in a specified device would allow easy transfer to new target panels.

2.
Langmuir ; 29(6): 1732-7, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23311964

RESUMEN

The biomodification of surfaces, especially titanium, is an important issue in current biomedical research. Regarding titanium, it is also important to ensure a specific protein modification of its surface because here protein binding that is too random can be observed. Specific nanoscale architectures can be applied to overcome this problem. As recently shown, streptavidin can be used as a coupling agent to immobilize biotinylated fibronectin (bFn) on a TiO(X) surface. Because of the conformation of adsorbed biotinylated fibronectin on a streptavidin monolayer, it is possible to adsorb more streptavidin and biotinylated fibronectin layers. On this basis, an alternating protein multilayer can be built up. In contrast to common layer-by-layer technology, in this procedure the mechanism of layer adsorption is very specific because of the interaction of biotin and streptavidin. In addition, we showed that the assembly of this multilayer system and its stability are dependent on the degree of labeling of biotinylated fibronectin. Hence we conclude that it is possible to build up well-defined nanoscale protein architectures by varying the degree of labeling of biotinylated fibronectin.


Asunto(s)
Biotinilación , Fibronectinas/química , Estreptavidina/química , Titanio/química , Adsorción , Fibronectinas/metabolismo , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia , Estreptavidina/metabolismo
3.
J Oral Maxillofac Surg ; 70(8): 1827-34, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22793955

RESUMEN

PURPOSE: Despite the undeniable potential of cell adhesion molecules such as fibronectin to support osteogenic cell responses and consecutive dental implant healing, the most beneficial mode of application onto titanium implant surfaces still requires investigation. Unspecific fibronectin adsorption on titanium dioxide (TiO(2)) surfaces can result in low-loading, high-desorption rates and protein-metal interactions with impaired biologic activity. The aim of the present study was to monitor the osteogenic cell responses (cell adhesion, proliferation, and differentiation) specifically to fibronectin biofunctionalized TiO(2). MATERIALS AND METHODS: An innovative biomimetic streptavidin-biotin layer system allows flexible, but stable, specific binding of biotinylated biomolecules such as fibronectin on TiO(2) surfaces. Transparent glass disks were sputtered with TiO(2). The biomimetic layer system was immobilized by self-assembly and consisted of silane, biotin-derivate, streptavidin, and biotinylated fibronectin (bFN). For the control group, unbiotinylated fibronectin was directly coated onto TiO(2). Early cell adhesion dynamics were quantified using automated processing of light microscopy images within the first 24 hours. Relative mRNA expression of integrin-ß1, cyclin D1, runt-related gene 2, alkaline phosphatase, and osteocalcin was obtained using quantitative real-time polymerase chain reactions 3 and 7 days after incubation. RESULTS: Although untreated TiO(2) preserved a rather immature osteogenic phenotype, both unbiotinylated fibronectin and bFN promoted osteogenic cell adhesion and cell differentiation. In particular, runt-related gene 2 expression was significantly promoted by bFN after 3 days. In contrast, cyclin D1 expression was decreased for unbiotinylated fibronectin and bFN after 7 days. CONCLUSIONS: The introduced biomimetic layer system contributes a coherent immobilization approach of adhesion molecules with promotion of osteogenic cell response in vitro.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biomiméticos/química , Fibronectinas/farmacología , Proteínas Inmovilizadas , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Titanio/química , Adsorción , Fosfatasa Alcalina/análisis , Biotina/química , Adhesión Celular/efectos de los fármacos , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/análisis , Ciclina D1/análisis , Fibronectinas/química , Humanos , Proteínas Inmovilizadas/química , Integrina beta1/análisis , Osteocalcina/análisis , Fenotipo , Silanos/química , Estreptavidina/química , Factores de Tiempo , Complejo Vitamínico B/química
4.
Pharmaceutics ; 14(7)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35890243

RESUMEN

RNA interference (RNAi) is a powerful therapeutic approach for messenger RNA (mRNA) level regulation in human cells. RNAi can be triggered by small interfering RNAs (siRNAs) which are delivered by non-viral carriers, e.g., dendriplexes. siRNA quantification inside carriers is essential in drug delivery system development. However, current siRNA measuring methods either are not very sensitive, only semi-quantitative or not specific towards intact target siRNA sequences. We present a novel reverse transcription real-time PCR (RT-qPCR)-based application for siRNA quantification in drug formulations. It enables specific and highly sensitive quantification of released, uncomplexed target siRNA and thus also indirect assessment of siRNA stability and concentration inside dendriplexes. We show that comparison with a dilution series allows for siRNA quantification, exclusively measuring intact target sequences. The limit of detection (LOD) was 4.2 pM (±0.2 pM) and the limit of quantification (LOQ) 77.8 pM (±13.4 pM) for uncomplexed siRNA. LOD and LOQ of dendriplex samples were 31.6 pM (±0 pM) and 44.4 pM (±9.0 pM), respectively. Unspecific non-target siRNA sequences did not decrease quantification accuracy when present in samples. As an example of use, we assessed siRNA complexation inside dendriplexes with varying nitrogen-to-phosphate ratios. Further, protection of siRNA inside dendriplexes from RNase A degradation was quantitatively compared to degradation of uncomplexed siRNA. This novel application for quantification of siRNA in drug delivery systems is an important tool for the development of new siRNA-based drugs and quality checks including drug stability measurements.

5.
Biosensors (Basel) ; 12(4)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35448297

RESUMEN

We demonstrate detection and quantification of bacterial load with a novel microfluidic one-pot wash-free fluorescence in situ hybridization (FISH) assay in droplets. The method offers minimal manual workload by only requiring mixing of the sample with reagents and loading it into a microfluidic cartridge. By centrifugal microfluidic step emulsification, our method partitioned the sample into 210 pL (73 µm in diameter) droplets for bacterial encapsulation followed by in situ permeabilization, hybridization, and signal detection. Employing locked nucleic acid (LNA)/DNA molecular beacons (LNA/DNA MBs) and NaCl-urea based hybridization buffer, the assay was characterized with Escherichia coli, Klebsiella pneumonia, and Proteus mirabilis. The assay performed with single-cell sensitivity, a 4-log dynamic range from a lower limit of quantification (LLOQ) at ~3 × 103 bacteria/mL to an upper limit of quantification (ULOQ) at ~3 × 107 bacteria/mL, anda linearity R2 = 0.976. The total time-to-results for detection and quantification was around 1.5 hours.


Asunto(s)
ADN , Microfluídica , Escherichia coli/genética , Hibridación Fluorescente in Situ/métodos , Microfluídica/métodos , Oligonucleótidos
6.
J Mol Diagn ; 24(1): 57-68, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34757015

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most frequent malignancy in childhood. Minimal residual disease (MRD) monitoring is an important prognostic factor for ALL treatment response and patient stratification. MRD monitoring uses personalized real-time PCR to measure the amount of cancer cells among normal cells. Due to clonal tumor evolution or secondary rearrangement processes, MRD markers can disappear during treatment, leading to false-negative MRD results and wrong decision-making in personalized treatments. Therefore, monitoring of multiple MRD markers per patient is required. For the first time, the authors present personalized multiplex mediator probe PCR (MP PCR) for MRD monitoring in ALL. These assays can precisely quantify more MRD markers in less sample material. Therefore, clinical outcomes will be less affected by clonal tumor evolution. Personalized duplex MP PCR assays were developed for different genomic MRD markers, including immunoglobulin/T-cell receptor gene rearrangements, gene fusions, and gene deletions. One duplex assay was successfully applied in a prospective patient case and compared with hydrolysis probes. Moreover, the authors increased the multiplex level from duplex to 4-plex and still met the EuroMRD requirements for reliable quantification. In addition, the authors' MRD-MP design guidelines and multiplex workflow facilitate and accelerate MP PCR assay development. This helps the standardization of personal diagnostics.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Reacción en Cadena de la Polimerasa Multiplex , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Langmuir ; 27(12): 7743-51, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21598954

RESUMEN

It is well-known that protein-modified implant surfaces such as TiO(2) show a higher bioconductivity. Fibronectin is a glycoprotein from the extracellular matrix (ECM) with a major role in cell adhesion. It can be applied on titanium oxide surfaces to accelerate implant integration. Not only the surface concentration but also the presentation of the protein plays an important role for the cellular response. We were able to show that TiO(X) surfaces modified with biotinylated fibronectin adsorbed on a streptavidin-silane self-assembly multilayer system are more effective regarding osteoblast adhesion than surfaces modified with nonspecifically bound fibronectin. The adsorption and conformation behavior of biotinylated and nonbiotinylated (native) fibronectin was studied by surface plasmon resonance (SPR) spectroscopy and atomic force microscopy (AFM). Imaging of the protein modification revealed that fibronectin adopts different conformations on nonmodified compared to streptavidin-modified TiO(X) surfaces. This conformational change of biotinylated fibronectin on the streptavidin monolayer delivers a fibronectin structure similar to the conformation inside the ECM and therefore explains the higher cell affinity for these surfaces.


Asunto(s)
Biotina/química , Fibronectinas/química , Estreptavidina/química , Titanio/química , Adsorción , Microscopía de Fuerza Atómica , Conformación Proteica , Resonancia por Plasmón de Superficie , Propiedades de Superficie
8.
Lab Chip ; 21(3): 558-570, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33319895

RESUMEN

We present a proof-of-principle study on automated, highly sensitive and multiplexed qPCR quantification by centrifugal microfluidics. The MRD disk can be used for standardisation of repetitive, longitudinal assays with high requirements on reproducibility and sensitivity, such as cancer monitoring. In contrast to high-throughput qPCR automation by bulky and expensive robotic workstations we employ a small centrifugal microfluidic instrument, addressing the need of low- to mid-throughput applications. As a potential application we demonstrate automated minimum residual disease (MRD) monitoring of prognostic markers in patients with acute lymphoblastic leukaemia (ALL). The disk-workflow covers all aspects of clinical gold standard MRD quantification: generation of standard curves, specificity controls, no template controls and quantification of the ALL patient sample. We integrated a highly sensitive, colorimetric 2-plex analysis of MRD targets, as well as a 2-plex analysis of reference genes, both in parallel and in a single LabDisk cartridge. For this purpose, a systematic procedure for crosstalk- and signal-to-noise-optimisation is introduced, providing a guideline for efficient multiplex readout inside microfluidic platforms. The qPCR standard curves (n = 12/12) generated on-disk reach clinically required linearity (R2 = 98.1% to R2 = 99.8%). In three consecutive MRD disk runs with an ALL patient sample containing the two representative MRD targets VH3D3D5JH3 and VkIkde, we observe high accordance between the on-disk quantifications (48 ± 6 copies/reaction and 69 ± 6 copies/reaction) and the expected concentrations (57 copies/reaction for both targets). In comparison to the clinical gold standard of manually pipetted, singleplex assays, the MRD disk yields comparable limit of quantification (1 × 10-4) in n = 6/6 analyses (vs. n = 4/4 in gold standard) and a limit of detection (1 × 10-5) in n = 6/6 analysis (vs. n = 2/4 in gold standard). The automation reduces the risk of manual liquid handling errors, making the MRD disk an attractive solution to assure reproducibility in moderate-throughput, longitudinal gene quantification applications.


Asunto(s)
Microfluídica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
9.
Cancers (Basel) ; 13(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830896

RESUMEN

There is an increasing demand for optimization-free multiplex assays to rapidly establish comprehensive target panels for cancer monitoring by liquid biopsy. We present the mediator probe (MP) PCR for the quantification of the seven most frequent point mutations and corresponding wild types (KRAS and BRAF) in colorectal carcinoma. Standardized parameters for the digital assay were derived using design of experiments. Without further optimization, the limit of detection (LoD) was determined through spiking experiments with synthetic mutant DNA in human genomic DNA. The limit of blank (LoB) was measured in cfDNA plasma eluates from healthy volunteers. The 2-plex and 4-plex MP ddPCR assays showed a LoB of 0 copies/mL except for 4-plex KRAS G13D (9.82 copies/mL) and 4-plex BRAF V600E (16.29 copies/mL) and allele frequencies of 0.004% ≤ LoD ≤ 0.38% with R2 ≥ 0.98. The quantification of point mutations in patient plasma eluates (18 patients) during follow-up using the 4-plex MP ddPCR showed a comparable performance to the reference assays. The presented multiplex assays need no laborious optimization, as they use the same concentrations and cycling conditions for all targets. This facilitates assay certification, allows a fast and flexible design process, and is thus easily adaptable for individual patient monitoring.

10.
Lab Chip ; 19(13): 2205-2219, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31139783

RESUMEN

We introduce a new concept for centrifugal microfluidics that enables fully automated serial dilution generation without any additional means besides temperature control. The key feature is time-independent, serial valving of mixing chambers by fill-level-coupled temperature change rate (FLC-TCR) actuated valving. The automated dilution is realized under continuous rotation which enables reliable control of wetting liquids without the need for any additional fabrication steps such as hydrophobic coating. All fluidic features are implemented in a monolithic fashion and disks are manufactured by foil thermoforming for scalable manufacturing. The new valving concept is demonstrated to reliably prevent valving if the diluted sample is not added to the mixing chamber (n = 30) and ensure valving if the dilution stage is completed (n = 15). The accuracy and precision of automated serial dilutions are verified by on-disk generation of qPCR standard curve dilutions and compared with manually generated reference dilutions. In a first step, the 5-log-stage standard curves are evaluated in a commercial qPCR thermocycler revealing a linearity of R2 ≥ 99.92% for the proposed LabDisk method vs. R2 ≥ 99.67% in manual reference dilutions. In a second step, the disk automated serial dilutions are combined with on-disk qPCR thermocycling and readout, both inside a LabDisk player. A 4-log-stage linearity of R2 ≥ 99.81% and a sensitivity of one leukemia associated ETV6-RUNX1 mutant DNA copy in a background of 100 000 wild-type DNA copies are achieved.

11.
J Biomed Mater Res A ; 106(11): 2910-2922, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30447103

RESUMEN

Increasing cell adhesion on implant surfaces is an issue of high biomedical importance. Early colonization with endogenous cells reduces the risk of bacterial contamination and enhances the integration of an implant into the diverse cellular tissues surrounding it. In vivo integration of implants is controlled by a complex spatial and temporal interplay of cytokines and adhesive molecules. The concept of a multi-biofunctionalized TiO2 surface for stimulating bone and soft tissue growth is presented here. All supramolecular architectures were built with a biotin-streptavidin coupling system. Biofunctionalization of TiO2 with immobilized FGF-2 and heparin could be shown to selectively increase the proliferation of fibroblasts while immobilized BMP-2 only stimulated the growth of osteoblasts. Furthermore, TiO2 surfaces biofunctionalized with either the BMP-2 or BMP-2/6 growth factor and the cell adhesion-enhancing protein fibronectin showed higher osteoblast adhesion than a TiO2 surface functionalized with only one of these proteins. In conclusion, the presented immobilization strategy is applicable in vivo for a selective surface coating of implants in both hard and connective tissue. The combined immobilization of different extracellular proteins on implants has the potential to further influence cell-specific reactions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2910-2922, 2018.


Asunto(s)
Proteína Morfogenética Ósea 2/química , Proteína Morfogenética Ósea 6/química , Adhesión Celular , Proliferación Celular , Materiales Biocompatibles Revestidos/química , Factor 2 de Crecimiento de Fibroblastos/química , Titanio/química , Línea Celular , Fibroblastos/citología , Humanos , Proteínas Inmovilizadas/química , Modelos Moleculares , Osteoblastos/citología , Prótesis e Implantes , Propiedades de Superficie
12.
Biotechniques ; 61(3): 123-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27625206

RESUMEN

Mediator probe (MP) PCR is a real-time PCR approach that uses standardized universal fluorogenic reporter oligonucleotides (UR) in conjunction with label-free sequence-specific probes. To enable multiplex real-time MP PCR, we designed a set of five optimized URs with different fluorescent labels. Performance of the optimized URs was verified in multiplex real-time MP PCR for the detection of a pentaplex food panel and a quadruplex methicillin-resistant Staphylococcus aureus (MRSA) panel. Results were comparable to corresponding multiplex hydrolysis probe (HP) PCR, also designated as TaqMan PCR. Analyses of MRSA DNA standards and DNA extracted from patient swab samples showed improved lower limits of detection (LoDs) by a factor of 2-5 when using quadruplex real-time MP PCR instead of HP PCR. The novel set of standardized URs we present here simplifies development of multiplex real-time PCR assays by requiring only the design of label-free probes. In the future, real-time PCR master mixes could be augmented with up to five standardized fluorogenic URs, each emitting light at a different wavelength.


Asunto(s)
Colorantes Fluorescentes/química , Análisis de los Alimentos/métodos , Tipificación Molecular/métodos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Animales , ADN/análisis , ADN/clasificación , ADN/genética , ADN/aislamiento & purificación , Alimentos/clasificación , Límite de Detección , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reproducibilidad de los Resultados
13.
Clin Implant Dent Relat Res ; 17 Suppl 2: e601-12, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25871526

RESUMEN

BACKGROUND: Biofunctionalized implant surfaces may accelerate bony integration and increase long-term stability. PURPOSE: The aim of the study was to evaluate the osseous reaction toward biomimetic titanium implants surfaces coated with quasicovalent immobilized fibronectin in an in vivo animal model. MATERIALS AND METHODS: A total of 84 implants (uncoated [control 1, n = 36], streptavidin-biotin coated [test 1, n = 24], streptavidin-biotin-fibronectin coated [test 2, n = 24]) were inserted 1 mm supracortically in the proximal tibia of 12 rabbits. The samples were examined after 3 and 6 weeks. Total bone-implant contact (tBIC; %), bone-implant contact in the cortical (cBIC; %) and in the spongious bone (sBIC; %) as well as the percentage of linear bone fill (PLF; %) were evaluated. RESULTS: After 3 weeks, streptavidin-biotin-fibronectin implants had a significant higher sBIC (p = .043) and PLF (p = .007) compared with the uncoated samples. After 6 weeks, this difference was significant for tBIC (p = .016) and cBIC (p < .001). Additionally, uncoated screws showed a significant higher sBIC when compared with the fibronectin coating (p < .001). Streptavidin-biotin-coated implants showed less bone growth at both time points of all examined parameters when compared with their counterparts (all p < .001). CONCLUSIONS: Quasicovalent immobilization of biotinylated fibronectin with the streptavidin-biotin-fibronectin system on smooth surface titanium shows a beneficial faster osseous healing in vivo. Besides, an antifouling effect of the streptavidin-biotin coating was proven.


Asunto(s)
Biotina/uso terapéutico , Implantes Dentales , Fibronectinas/uso terapéutico , Estreptavidina/uso terapéutico , Titanio/uso terapéutico , Animales , Biotinilación , Implantación Dental Endoósea/instrumentación , Implantación Dental Endoósea/métodos , Conejos
14.
Methods Mol Biol ; 1160: 55-73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24740221

RESUMEN

Mediator probe PCR (MP PCR) is a novel detection format for real-time nucleic acid analysis. Label-free mediator probes (MP) and fluorogenic universal reporter (UR) oligonucleotides are combined to accomplish signal generation. Compared to conventional hydrolysis probe PCRs costs can thus be saved by using the same fluorogenic UR for signal generation in different assays. This tutorial provides a practical guideline to MP and UR design. MP design rules are very similar to those of hydrolysis probes. The major difference is in the replacement of the fluorophore and quencher by one UR-specific sequence tag, the mediator. Further protocols for the setup of reactions, to detect either DNA or RNA targets with clinical diagnostic target detection as models, are explained. Ready to use designs for URs are suggested and guidelines for their de novo design are provided as well, including a protocol for UR signal generation characterization.


Asunto(s)
Colorantes Fluorescentes/química , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Secuencia de Bases , ADN Viral/química , ADN Viral/genética , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico
15.
J Biomed Mater Res A ; 100(2): 388-95, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22083833

RESUMEN

Non-fouling TiO2 surfaces are attractive for a wide range of applications such as biosensors and medical devices, where biologically inert surfaces are needed. Typically, this is achieved by controlled surface modifications which prevent protein adsorption. For example, polyethylene glycol (PEG) or PEG-derived polymers have been widely applied to render TiO2 surfaces biologically inert. These surfaces have been further modified in order to achieve specific bio-activation. Therefore, there have been efforts to specifically functionalize TiO2 surfaces with polymers with embedded biotin motives, which can be used to couple streptavidin for further functionalization. As an alternative, here a streptavidin layer was immobilized by self-assembly directly on a biotinylated TiO2 surface, thus forming an anti-adhesive matrix, which can be selectively bio-activated. The anti-adhesive properties of these substrates were analyzed by studying the interaction of the surface coating with fibronectin, lysozym, and osteoblast cells using surface plasmon resonance spectroscopy, atomic force microscopy, and light microscopy. In contrast to non-modified TiO2 surfaces, streptavidin-coated TiO2 surfaces led to a very biologically inert substrate, making this type of surface coating a promising alternative to polymer coatings of TiO2 surfaces.


Asunto(s)
Osteoblastos/citología , Estreptavidina/farmacología , Titanio/farmacología , Adsorción , Biotinilación/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Línea Celular , Fibronectinas/química , Humanos , Cinética , Microscopía de Fuerza Atómica , Muramidasa/química , Osteoblastos/efectos de los fármacos , Silanos/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA