Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Biotechnol J ; 22(4): 987-1000, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38018512

RESUMEN

Drought is a deleterious abiotic stress factor that constrains crop growth and development. Post-translational modification of proteins mediated by the ubiquitin-proteasome system is an effective strategy for directing plant responses to stress, but the regulatory mechanisms in wheat remain unclear. In this study, we showed that TaSDIR1-4A is a positive modulator of the drought response. Overexpression of TaSDIR1-4A increased the hypersensitivity of stomata, root length and endogenous abscisic acid (ABA) content under drought conditions. TaSDIR1-4A encodes a C3H2C3-type RING finger protein with E3 ligase activity. Amino acid mutation in its conserved domain led to loss of activity and altered the subcellular localization. The membrane-bound transcription factor TaWRKY29 was identified by yeast two-hybrid screening, and it was confirmed as interacting with TaSDIR1-4A both in vivo and in vitro. TaSDIR1-4A mediated the polyubiquitination and proteolysis of the C-terminal amino acid of TaWRKY29, and its translocation from the plasma membrane to the nucleus. Activated TaWRKY29 bound to the TaABI5 promoter to stimulate its expression, thereby positively regulating the ABA signalling pathway and drought response. Our findings demonstrate the positive role of TaSDIR1-4A in drought tolerance and provide new insights into the involvement of UPS in the wheat stress response.


Asunto(s)
Arabidopsis , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Resistencia a la Sequía , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Sequías , Aminoácidos/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant J ; 112(3): 722-737, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36097863

RESUMEN

Plants have developed various protective mechanisms to survive drought stress. Previously, it was shown that a wheat bZIP transcription factor gene TaFD-Like2-1A (TaFDL2-1A) can confer drought tolerance in Arabidopsis. However, the biological functions related to drought stress tolerance of TaFDL2-1A in wheat (Triticum aestivum L.) remain unclear. In the present study, overexpression of TaFDL2-1A in the wheat cultivar Fielder improved drought resistance and conferred abscisic acid (ABA) hypersensitivity. Further analysis showed that overexpression of TaFDL2-1A increased the hypersensitivity of stomata to drought stress and endogenous ABA content under drought conditions. Genetic analysis and transcriptional regulation analysis indicated that TaFDL2-1A binds directly to the promoter fragments of TaRAB21s and TaNCED2s via ACGT core cis-elements, thereby activating their expression, leading to enhanced ABA responses and endogenous ABA accumulation. In addition, our results demonstrate that overexpression of TaFDL2-1A results in higher SOD and GPX activities in wheat under drought conditions by promoting the expression of TaSOD1 and TaGPx1-D, indicating enhanced reactive oxygen species (ROS) scavenging. These results imply that TaFDL2-1A positively regulates ABA biosynthesis, ABA responses, and ROS scavenging to improve drought stress tolerance in transgenic wheat. Our findings improve our understanding of the mechanisms that allow the wheat bZIP transcription factor to improve drought resistance and provide a useful reference gene for breeding programs to enhance drought resistance.


Asunto(s)
Ácido Abscísico , Arabidopsis , Ácido Abscísico/metabolismo , Triticum/metabolismo , Sequías , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Fitomejoramiento , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
3.
Ann Bot ; 131(1): 185-198, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35451455

RESUMEN

BACKGROUND AND AIMS: Dasypyrum villosum (2n = 2x = 14) harbours potentially beneficial genes for hexaploid and tetraploid wheat improvement. Highly diversified chromosome variation exists among and within accessions due to its open-pollination nature. The wheat-D. villosum T6VS·6AL translocation was widely used in breeding mainly because gene Pm21 in the 6VS segment conferred high and lasting powdery mildew resistance. However, the widespread use of this translocation may narrow the genetic base of wheat. A better solution is to utilize diversified D. villosum accessions as the genetic source for wheat breeding. Analysis of cytological and genetic polymorphisms among D. villosum accessions also provides genetic evolution information on the species. Using cytogenetic and molecular tools we analysed genetic polymorphisms among D. villosum accessions and developed consensus karyotypes to assist the introgression of beneficial genes from D. villosum into wheat. METHODS: A multiplex probe of repeats for FISH, GISH and molecular markers were used to detect chromosome polymorphisms among D. villosum accessions. Polymorphic signal block types, chromosome heterogeneity and heterozygosity, and chromosome polymorphic information content were used in genetic diversity analysis. KEY RESULTS: Consensus karyotypes of D. villosum were developed, and the homoeologous statuses of individual D. villosum chromosomes relative to wheat were determined. Tandem repeat probes of pSc119.2, (GAA)10 and the AFA family produced high-resolution signals and not only showed different signal patterns in D. villosum chromosomes but also revealed the varied distribution of tandem repeats among chromosomes and accessions. A total of 106 polymorphic chromosomes were identified from 13 D. villosum accessions and high levels of chromosomal heterozygosity and heterogeneity were observed. A subset of 56 polymorphic chromosomes was transferred into durum wheat through wide crosses, and seven polymorphic chromosomes are described in two newly developed durum-D. villosum amphidiploids. CONCLUSIONS: Consensus karyotypes of D. villosum and oligonucleotide FISH facilitated identification of polymorphic signal blocks and a high level of chromosomal heterozygosity and heterogeneity among D. villosum accessions, seen in newly developed amphiploids. The abundant genetic diversity of D. villosum and range of alleles, exploitable through interploid crosses, backcrosses and recombination (chromosome engineering), allow introduction of biotic and abiotic stress resistances into wheat, translating into increasing yield, end-use quality and crop sustainability.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Cromosomas de las Plantas , Poaceae/genética , Fenotipo
4.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562909

RESUMEN

Drought stress is an important factor that severely affects crop yield and quality. Autophagy has a crucial role in the responses to abiotic stresses. In this study, we explore TaNBR1 in response to drought stress. Expression of the TaNBR1 gene was strongly induced by NaCl, PEG, and abscisic acid treatments. The TaNBR1 protein is localized in the Golgi apparatus and autophagosome. Transgenic Arabidopsis plants overexpressing TaNBR1 exhibited reduced drought tolerance. When subjected to drought stress, compared to the wild-type (WT) lines, the transgenic overexpressing TaNBR1 plants had a lower seed germination rate, relative water content, proline content, and reduced accumulation of antioxidant enzymes, i.e., superoxide dismutase, peroxidase, and catalase, as well as higher chlorophyll losses, malondialdehyde contents, and water loss. The transgenic plants overexpressing TaNBR1 produced much shorter roots in response to mannitol stress, in comparison to the WT plants, and they exhibited greater sensitivity to abscisic acid treatment. The expression levels of the genes related to stress in the transgenic plants were affected in response to drought stress. Our results indicate that TaNBR1 negatively regulates drought stress responses by affecting the expression of stress-related genes in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Portadoras/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Triticum/metabolismo , Agua/metabolismo
5.
Mol Breed ; 41(4): 30, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37309352

RESUMEN

Founder wheat lines have played key role in Chinese wheat improvement. Wheat-Dasypyrum villosum translocation T6VS·6AL has been widely used in wheat breeding in recent years due to its high level of powdery mildew resistance and other beneficial genes. Reference oligo-nucleotide multiplex probe (ONMP)-FISH karyotypes of six T6VS·6AL donor lines were developed and used for characterizing 32 derivative cultivars and lines. T6VS·6AL was present in 27 cultivar/lines with 20 from southern China. Next, ONMP-FISH was used to study chromosome constitution of randomly collected wheat cultivars and advanced breeding lines from southern and northern regions of China: 123 lines from the regional test plots of southern China and 110 from northern China. In southern China, T6VS·6AL (35.8%) was the most predominant variation, while T1RS·1BL (27.3%) was the most predominant in northern China. The pericentric inversion perInv 6B derived from its founder wheat Funo and Abbondaza was the second most predominant chromosome variant in both regions. Other chromosome variants were present in very low frequencies. Additionally, 167 polymorphic chromosome types were identified. Based on these variations, 271 cultivars and lines were clustered into three groups, including southern, northern, and mixed groups that contained wheat from both regions. Different dominant chromosome variations were seen, indicating chromosome differentiation in the three groups of wheat. The clearly identified wheat lines with T6VS·6AL in different backgrounds and oligonucleotide probe set will facilitate their utilization in wheat breeding and in identifying other beneficial traits that may be linked to this translocation. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01206-3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA