Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 604(7906): 563-570, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418687

RESUMEN

Chimeric antigen receptor (CAR) therapy has had a transformative effect on the treatment of haematologic malignancies1-6, but it has shown limited efficacy against solid tumours. Solid tumours may have cell-intrinsic resistance mechanisms to CAR T cell cytotoxicity. Here, to systematically identify potential resistance pathways in an unbiased manner, we conducted a genome-wide CRISPR knockout screen in glioblastoma, a disease in which CAR T cells have had limited efficacy7,8. We found that the loss of genes in the interferon-γ receptor (IFNγR) signalling pathway (IFNGR1, JAK1 or JAK2) rendered glioblastoma and other solid tumours more resistant to killing by CAR T cells both in vitro and in vivo. However, loss of this pathway did not render leukaemia or lymphoma cell lines insensitive to CAR T cells. Using transcriptional profiling, we determined that glioblastoma cells lacking IFNγR1 had lower upregulation of cell-adhesion pathways after exposure to CAR T cells. We found that loss of IFNγR1 in glioblastoma cells reduced overall CAR T cell binding duration and avidity. The critical role of IFNγR signalling in susceptibility of solid tumours to CAR T cells is surprising, given that CAR T cells do not require traditional antigen-presentation pathways. Instead, in glioblastoma tumours, IFNγR signalling was required for sufficient adhesion of CAR T cells to mediate productive cytotoxicity. Our work demonstrates that liquid and solid tumours differ in their interactions with CAR T cells and suggests that enhancing binding interactions between T cells and tumour cells may yield improved responses in solid tumours.


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Muerte Celular , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Inmunoterapia Adoptiva , Linfocitos T/patología
2.
N Engl J Med ; 390(14): 1290-1298, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38477966

RESUMEN

In this first-in-human, investigator-initiated, open-label study, three participants with recurrent glioblastoma were treated with CARv3-TEAM-E T cells, which are chimeric antigen receptor (CAR) T cells engineered to target the epidermal growth factor receptor (EGFR) variant III tumor-specific antigen, as well as the wild-type EGFR protein, through secretion of a T-cell-engaging antibody molecule (TEAM). Treatment with CARv3-TEAM-E T cells did not result in adverse events greater than grade 3 or dose-limiting toxic effects. Radiographic tumor regression was dramatic and rapid, occurring within days after receipt of a single intraventricular infusion, but the responses were transient in two of the three participants. (Funded by Gateway for Cancer Research and others; INCIPIENT ClinicalTrials.gov number, NCT05660369.).


Asunto(s)
Receptores ErbB , Glioblastoma , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos , Humanos , Linfocitos T CD8-positivos/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/terapia , Glioblastoma/patología , Inmunoterapia Adoptiva/efectos adversos , Recurrencia Local de Neoplasia/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/uso terapéutico , Receptores Quiméricos de Antígenos/uso terapéutico
3.
Blood ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781564

RESUMEN

We report on the first-in-human clinical trial using chimeric antigen receptor (CAR) T-cells targeting CD37, an antigen highly expressed in B- and T-cell malignancies (clinicaltrials.gov NCT04136275). Five patients with relapsed or refractory CD37+ lymphoid malignancies were enrolled and infused with autologous CAR-37 T-cells. CAR-37 T-cells expanded in the peripheral blood of all patients and, at peak, comprised >94% of the total lymphocytes in 4/5 patients. Tumor responses were observed in 4/5 patients, with 3 complete responses, 1 mixed response, and 1 patient whose disease progressed rapidly and with relative loss of CD37 expression. Three patients experienced prolonged and severe pancytopenia, and in two of these patients, efforts to ablate CAR-37 T-cells (which were engineered to co-express truncated EGFR) with cetuximab, were unsuccessful. Hematopoiesis was restored in these two patients following allogeneic hematopoietic stem cell transplantation. No other severe, non-hematopoietic toxicities occurred. We investigated the mechanisms of profound pancytopenia and did not observe activation of CAR-37 T-cells in response to hematopoietic stem cells in vitro or hematotoxicity in humanized models. Patients with pancytopenia had sustained high levels of IL-18, with low levels of IL-18 binding protein in their peripheral blood. IL-18 levels were significantly higher in CAR-37-treated patients relative to both cytopenic and non-cytopenic cohorts of CAR-19-treated cohorts of patients. In conclusion, CAR-37 T-cells exhibited anti-tumor activity, with significant CAR expansion and cytokine production. CAR-37 T-cells may be an effective therapy in hematologic malignancies as a bridge to hematopoietic stem cell transplant.

4.
Blood ; 139(15): 2306-2315, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35167655

RESUMEN

CD19-directed chimerical antigen receptor T-cell (CAR-T) products have gained US Food and Drug Administration approval for systemic large B-cell lymphoma. Because of concerns about potential immune cell-associated neurotoxicity syndrome (ICANS), patients with primary central nervous system (CNS) lymphoma (PCNSL) were excluded from all pivotal CAR-T studies. We conducted a phase 1/2 clinical trial of tisagenlecleucel in a highly refractory patients with PCNSL and significant unmet medical need. Here, we present results of 12 relapsed patients with PCNSL who were treated with tisagenlecleucel and followed for a median time of 12.2 months (range, 3.64-23.5). Grade 1 cytokine release syndrome was observed in 7/12 patients (58.3%), low-grade ICANS in 5/12 (41.6%) patients, and only 1 patient experienced grade 3 ICANS. Seven of 12 patients (58.3%) demonstrated response, including a complete response in 6/12 patients (50%). There were no treatment-related deaths. Three patients had ongoing complete remission at data cutoff. Tisagenlecleucel expanded in the peripheral blood and trafficked to the CNS. Exploratory analysis identified T-cell, CAR T, and macrophage gene signatures in cerebrospinal fluid following infusion when compared with baseline. Overall, tisagenlecleucel was well tolerated and resulted in a sustained remission in 3/7 (42.9%) of initial responders. These data suggest that tisagenlecleucel is safe and effective in this highly refractory patient population. This trial was registered at www.clinicaltrials.gov as #NCT02445248.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Inmunoterapia Adoptiva , Linfoma , Receptores de Antígenos de Linfocitos T , Antígenos CD19/uso terapéutico , Neoplasias del Sistema Nervioso Central/terapia , Humanos , Inmunoterapia Adoptiva/efectos adversos , Linfoma/terapia , Receptores de Antígenos de Linfocitos T/uso terapéutico , Receptores Quiméricos de Antígenos/uso terapéutico
5.
Clin Infect Dis ; 75(1): e869-e873, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35278306

RESUMEN

COVID-19 breakthrough cases among vaccinated individuals demonstrate the value of measuring long-term immunity to SARS-CoV-2 and its variants. We demonstrate that anti-spike T-cell responses and IgG antibody levels are maintained but decrease over time and are lower in BNT162b2- versus mRNA-1273-vaccinated individuals. T-cell responses to the variants are relatively unaffected.


Asunto(s)
COVID-19 , Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2/genética , Linfocitos T
6.
Mol Ther ; 29(2): 433-441, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33130313

RESUMEN

Large B cell lymphoma (LBCL) is curable with standard chemo-immunotherapy in the majority of cases. However, patients with primary refractory or relapsed disease have historically had limited treatment options. Two gene-modified chimeric antigen receptor (CAR)-T cell therapies have now been approved for these indications. The clinical decisions and management surrounding these gene-modified "living drugs" are nuanced and complex. In this article, we discuss the evolving evidence supporting the use of these CAR-T cells, including patient selection, screening procedures, special populations, bridging therapy, lymphodepletion, clinical management, relapse, and follow up.


Asunto(s)
Inmunoterapia Adoptiva , Linfoma de Células B/patología , Linfoma de Células B/terapia , Progresión de la Enfermedad , Aprobación de Drogas , Humanos , Inmunoterapia Adoptiva/métodos , Linfoma de Células B/inmunología , Estadificación de Neoplasias , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Estados Unidos , United States Food and Drug Administration
7.
Blood ; 134(11): 860-866, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31320380

RESUMEN

Chimeric antigen receptor (CAR) T cells targeting CD19 have emerged as a leading engineered T-cell therapy for relapsed/refractory B-cell non-Hodgkin lymphoma. The phase 1/2 clinical trials that led to US Food and Drug Administration approval excluded patients with central nervous system (CNS) involvement, due to strict eligibility criteria. Here, we report on our institutional experience with 8 secondary CNS lymphoma patients treated with commercial tisagenlecleucel. No patient experienced greater than grade 1 neurotoxicity, and no patient required tocilizumab or steroids for CAR T-cell-mediated toxicities. Biomarker analysis suggested CAR T-cell expansion, despite the absence of systemic disease, and early response assessments demonstrated activity of IV infused CAR T cells within the CNS space.


Asunto(s)
Neoplasias del Sistema Nervioso Central/secundario , Neoplasias del Sistema Nervioso Central/terapia , Inmunoterapia Adoptiva/métodos , Linfoma/terapia , Receptores de Antígenos de Linfocitos T/uso terapéutico , Adolescente , Adulto , Anciano , Neoplasias del Sistema Nervioso Central/inmunología , Femenino , Humanos , Linfoma/inmunología , Linfoma/patología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Linfocitos T/inmunología , Linfocitos T/trasplante , Resultado del Tratamiento , Adulto Joven
8.
Biol Blood Marrow Transplant ; 26(9): 1567-1574, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32417490

RESUMEN

Delayed reconstitution of the immune system is a long-recognized complication after allogeneic hematopoietic cell transplantation (HCT). Specifically, loss of T cell diversity has been thought to contribute to infectious complications, graft-versus-host disease (GVHD), and disease relapse. We performed serial high-resolution next-generation sequencing of T cell receptor (TCR)-ß in 99 related or unrelated donor (57 unrelated, 42 related) allogeneic HCT recipients (55 with reduced-intensity conditioning, 44 with myeloablative conditioning) during the first 3 months after HCT using the immunoSEQ Assay. We measured T cell fraction, clonality (1- Peilou's evenness) and Daley-Smith richness from recipient samples at multiple time points. In agreement with previous studies, we found that although absolute T cell numbers recover relatively quickly after HCT, T cell repertoire diversity remains diminished. Restricted diversity was associated with conditioning intensity, use of antithymocyte globulin, and donor type. Increased number of expanded clones compared to donor T cell clones at day +30 was associated with the incidence of acute GVHD (hazard ratio [HR], 1.11; P = .00005). Even after exclusion of the 12 patients who developed acute GVHD before day +30, the association between acute GVHD and increased clonal expansion at day +30 remained (HR, 1.098; P = .041), indicating that increased clonal T cell expansion preceded the development of acute GVHD. Our results highlight T cell clonal expansion as a potential novel biomarker for acute GVHD that warrants further study.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Linfocitos T , Acondicionamiento Pretrasplante , Donante no Emparentado
10.
11.
Am J Hematol ; 94(S1): S34-S41, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30632631

RESUMEN

CAR-T cells have made dramatic inroads in targeting CD19-positive B-cell malignancies. This review focuses on application of CAR-T cells in hematologic malignancies beyond targeting CD19, with specific attention to Hodgkin's lymphoma and acute myeloid leukemia.


Asunto(s)
Neoplasias Hematológicas/terapia , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/uso terapéutico , Enfermedad de Hodgkin/terapia , Humanos , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos de Linfocitos T/inmunología
15.
J Immunother Cancer ; 12(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724463

RESUMEN

BACKGROUND: Adoptive cell therapy, such as chimeric antigen receptor (CAR)-T cell therapy, has improved patient outcomes for hematological malignancies. Currently, four of the six FDA-approved CAR-T cell products use the FMC63-based αCD19 single-chain variable fragment, derived from a murine monoclonal antibody, as the extracellular binding domain. Clinical studies demonstrate that patients develop humoral and cellular immune responses to the non-self CAR components of autologous CAR-T cells or donor-specific antigens of allogeneic CAR-T cells, which is thought to potentially limit CAR-T cell persistence and the success of repeated dosing. METHODS: In this study, we implemented a one-shot approach to prevent rejection of engineered T cells by simultaneously reducing antigen presentation and the surface expression of both Classes of the major histocompatibility complex (MHC) via expression of the viral inhibitors of transporter associated with antigen processing (TAPi) in combination with a transgene coding for shRNA targeting class II MHC transactivator (CIITA). The optimal combination was screened in vitro by flow cytometric analysis and mixed lymphocyte reaction assays and was validated in vivo in mouse models of leukemia and lymphoma. Functionality was assessed in an autologous setting using patient samples and in an allogeneic setting using an allogeneic mouse model. RESULTS: The combination of the Epstein-Barr virus TAPi and an shRNA targeting CIITA was efficient and effective at reducing cell surface MHC classes I and II in αCD19 'stealth' CAR-T cells while retaining in vitro and in vivo antitumor functionality. Mixed lymphocyte reaction assays and IFNγ ELISpot assays performed with T cells from patients previously treated with autologous αCD19 CAR-T cells confirm that CAR T cells expressing the stealth transgenes evade allogeneic and autologous anti-CAR responses, which was further validated in vivo. Importantly, we noted anti-CAR-T cell responses in patients who had received multiple CAR-T cell infusions, and this response was reduced on in vitro restimulation with autologous CARs containing the stealth transgenes. CONCLUSIONS: Together, these data suggest that the proposed stealth transgenes may reduce the immunogenicity of autologous and allogeneic cellular therapeutics. Moreover, patient data indicate that repeated doses of autologous FMC63-based αCD19 CAR-T cells significantly increased the anti-CAR T cell responses in these patients.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Animales , Humanos , Ratones , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , Transgenes , Linfocitos T/inmunología
16.
Leukemia ; 38(3): 590-600, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38123696

RESUMEN

CAR-T cell therapy has emerged as a breakthrough therapy for the treatment of relapsed and refractory hematologic malignancies. However, insufficient CAR-T cell expansion and persistence is a leading cause of treatment failure. Exogenous or transgenic cytokines have great potential to enhance CAR-T cell potency but pose the risk of exacerbating toxicities. Here we present a chemical-genetic system for spatiotemporal control of cytokine function gated by the off-patent anti-cancer molecular glue degrader drug lenalidomide and its analogs. When co-delivered with a CAR, a membrane-bound, lenalidomide-degradable IL-7 fusion protein enforced a clinically favorable T cell phenotype, enhanced antigen-dependent proliferative capacity, and enhanced in vivo tumor control. Furthermore, cyclical pharmacologic combined control of CAR and cytokine abundance enabled the deployment of highly active, IL-7-augmented CAR-T cells in a dual model of antitumor potency and T cell hyperproliferation.


Asunto(s)
Interleucina-7 , Receptores de Antígenos de Linfocitos T , Humanos , Lenalidomida/farmacología , Receptores de Antígenos de Linfocitos T/genética , Interleucina-7/metabolismo , Línea Celular Tumoral , Linfocitos T/metabolismo , Inmunoterapia Adoptiva , Citocinas/metabolismo
17.
Cell Chem Biol ; 31(2): 338-348.e5, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37989314

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies are medical breakthroughs in cancer treatment. However, treatment failure is often caused by CAR T cell dysfunction. Additional approaches are needed to overcome inhibitory signals that limit anti-tumor potency. Here, we developed bifunctional fusion "degrader" proteins that bridge one or more target proteins and an E3 ligase complex to enforce target ubiquitination and degradation. Conditional degradation strategies were developed using inducible degrader transgene expression or small molecule-dependent E3 recruitment. We further engineered degraders to block SMAD-dependent TGFß signaling using a domain from the SARA protein to target both SMAD2 and SMAD3. SMAD degrader CAR T cells were less susceptible to suppression by TGFß and demonstrated enhanced anti-tumor potency in vivo. These results demonstrate a clinically suitable synthetic biology platform to reprogram E3 ligase target specificity for conditional, multi-specific endogenous protein degradation, with promising applications including enhancing the potency of CAR T cell therapy.


Asunto(s)
Neoplasias , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Inmunoterapia Adoptiva/métodos , Ubiquitinación , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
18.
Cytometry B Clin Cytom ; 106(3): 162-170, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38418432

RESUMEN

Chimeric antigen receptor (CAR) modified T cell therapies targeting BCMA have displayed impressive activity in the treatment of multiple myeloma. There are currently two FDA licensed products, ciltacabtagene autoleucel and idecabtagene vicleucel, for treating relapsed and refractory disease. Although correlative analyses performed by product manufacturers have been reported in clinical trials, there are limited options for reliable BCMA CAR T detection assays for physicians and researchers looking to explore it as a biomarker for clinical outcome. Given the known association of CAR T cell expansion kinetics with toxicity and response, being able to quantify BCMA CAR T cells routinely and accurately in the blood of patients can serve as a valuable asset. Here, we optimized an accurate and sensitive flow cytometry test using a PE-conjugated soluble BCMA protein, with a lower limit of quantitation of 0.19% of CD3+ T cells, suitable for use as a routine assay for monitoring the frequency of BCMA CAR T cells in the blood of patients receiving either ciltacabtagene autoleucel or idecabtagene vicleucel.


Asunto(s)
Antígeno de Maduración de Linfocitos B , Citometría de Flujo , Inmunoterapia Adoptiva , Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Citometría de Flujo/métodos , Antígeno de Maduración de Linfocitos B/inmunología , Receptores Quiméricos de Antígenos/inmunología , Inmunoterapia Adoptiva/métodos , Mieloma Múltiple/inmunología , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/sangre , Linfocitos T/inmunología
19.
Sci Transl Med ; 16(750): eadk7640, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838132

RESUMEN

Approximately 50% of patients with hematologic malignancies relapse after chimeric antigen receptor (CAR) T cell treatment; mechanisms of failure include loss of CAR T persistence and tumor resistance to apoptosis. We hypothesized that both of these challenges could potentially be overcome by overexpressing one or more of the Bcl-2 family proteins in CAR T cells to reduce their susceptibility to apoptosis, both alone and in the presence of BH3 mimetics, which can be used to activate apoptotic machinery in malignant cells. We comprehensively investigated overexpression of different Bcl-2 family proteins in CAR T cells with different signaling domains as well as in different tumor types. We found that Bcl-xL and Bcl-2 overexpression in CAR T cells bearing a 4-1BB costimulatory domain resulted in increased expansion and antitumor activity, reduced exhaustion, and decreased apoptotic priming. In addition, CAR T cells expressing either Bcl-xL or a venetoclax-resistant Bcl-2 variant led to enhanced antitumor efficacy and survival in murine xenograft models of lymphoma and leukemia in the presence or absence of the BH3 mimetic venetoclax, a clinically approved BH3 mimetic. In this setting, Bcl-xL overexpression had stronger effects than overexpression of Bcl-2 or the Bcl-2(G101V) variant. These findings suggest that CAR T cells could be optimally engineered by overexpressing Bcl-xL to enhance their persistence while opening a therapeutic window for combination with BH3 mimetics to prime tumors for apoptosis.


Asunto(s)
Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes , Proteínas Proto-Oncogénicas c-bcl-2 , Receptores Quiméricos de Antígenos , Sulfonamidas , Humanos , Animales , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Sulfonamidas/farmacología , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones , Linfocitos T/metabolismo , Linfocitos T/inmunología , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Proteína bcl-X/metabolismo , Fragmentos de Péptidos , Proteínas Proto-Oncogénicas
20.
Clin Cancer Res ; 30(9): 1859-1877, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38393682

RESUMEN

PURPOSE: Targeting solid tumors with chimeric antigen receptor (CAR) T cells remains challenging due to heterogenous target antigen expression, antigen escape, and the immunosuppressive tumor microenvironment (TME). Pancreatic cancer is characterized by a thick stroma generated by cancer-associated fibroblasts (CAF), which may contribute to the limited efficacy of mesothelin-directed CAR T cells in early-phase clinical trials. To provide a more favorable TME for CAR T cells to target pancreatic ductal adenocarcinoma (PDAC), we generated T cells with an antimesothelin CAR and a secreted T-cell-engaging molecule (TEAM) that targets CAF through fibroblast activation protein (FAP) and engages T cells through CD3 (termed mesoFAP CAR-TEAM cells). EXPERIMENTAL DESIGN: Using a suite of in vitro, in vivo, and ex vivo patient-derived models containing cancer cells and CAF, we examined the ability of mesoFAP CAR-TEAM cells to target PDAC cells and CAF within the TME. We developed and used patient-derived ex vivo models, including patient-derived organoids with patient-matched CAF and patient-derived organotypic tumor spheroids. RESULTS: We demonstrated specific and significant binding of the TEAM to its respective antigens (CD3 and FAP) when released from mesothelin-targeting CAR T cells, leading to T-cell activation and cytotoxicity of the target cell. MesoFAP CAR-TEAM cells were superior in eliminating PDAC and CAF compared with T cells engineered to target either antigen alone in our ex vivo patient-derived models and in mouse models of PDAC with primary or metastatic liver tumors. CONCLUSIONS: CAR-TEAM cells enable modification of tumor stroma, leading to increased elimination of PDAC tumors. This approach represents a promising treatment option for pancreatic cancer.


Asunto(s)
Complejo CD3 , Endopeptidasas , Proteínas Ligadas a GPI , Inmunoterapia Adoptiva , Mesotelina , Neoplasias Pancreáticas , Receptores Quiméricos de Antígenos , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Ratones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Complejo CD3/inmunología , Complejo CD3/metabolismo , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Línea Celular Tumoral , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Adenocarcinoma/inmunología , Adenocarcinoma/terapia , Adenocarcinoma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA