Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 6(6): e1000994, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20585616

RESUMEN

Hypoxia-inducible factors (HIFs) are a family of evolutionary conserved alpha-beta heterodimeric transcription factors that induce a wide range of genes in response to low oxygen tension. Molecular mechanisms that mediate oxygen-dependent HIF regulation operate at the level of the alpha subunit, controlling protein stability, subcellular localization, and transcriptional coactivator recruitment. We have conducted an unbiased genome-wide RNA interference (RNAi) screen in Drosophila cells aimed to the identification of genes required for HIF activity. After 3 rounds of selection, 30 genes emerged as critical HIF regulators in hypoxia, most of which had not been previously associated with HIF biology. The list of genes includes components of chromatin remodeling complexes, transcription elongation factors, and translational regulators. One remarkable hit was the argonaute 1 (ago1) gene, a central element of the microRNA (miRNA) translational silencing machinery. Further studies confirmed the physiological role of the miRNA machinery in HIF-dependent transcription. This study reveals the occurrence of novel mechanisms of HIF regulation, which might contribute to developing novel strategies for therapeutic intervention of HIF-related pathologies, including heart attack, cancer, and stroke.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Drosophila melanogaster/genética , Hipoxia/genética , Interferencia de ARN , Transcripción Genética , Animales , Proteínas Argonautas , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Factores Eucarióticos de Iniciación/genética , Estudio de Asociación del Genoma Completo , Hipoxia/metabolismo
2.
J Cell Sci ; 122(Pt 21): 3973-82, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19825938

RESUMEN

Stress granules (SGs) and P-bodies (PBs) are related cytoplasmic structures harboring silenced mRNAs. SGs assemble transiently upon cellular stress, whereas PBs are constitutive and are further induced by stress. Both foci are highly dynamic, with messenger ribonucleoproteins (mRNPs) and proteins rapidly shuttling in and out. Here, we show that impairment of retrograde transport by knockdown of mammalian dynein heavy chain 1 (DHC1) or bicaudal D1 (BicD1) inhibits SG formation and PB growth upon stress, without affecting protein-synthesis blockage. Conversely, impairment of anterograde transport by knockdown of kinesin-1 heavy chain (KIF5B) or kinesin light chain 1 (KLC1) delayed SG dissolution. Strikingly, SG dissolution is not required to restore translation. Simultaneous knockdown of dynein and kinesin reverted the effect of single knockdowns on both SGs and PBs, suggesting that a balance between opposing movements driven by these molecular motors governs foci formation and dissolution. Finally, we found that regulation of SG dynamics by dynein and kinesin is conserved in Drosophila.


Asunto(s)
Estructuras Citoplasmáticas/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Estructuras Citoplasmáticas/genética , Proteínas de Drosophila , Dineínas/genética , Cinesinas/genética , Ratones , Proteínas Asociadas a Microtúbulos/genética , Células 3T3 NIH , Biosíntesis de Proteínas
3.
PLoS One ; 10(8): e0134714, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26248315

RESUMEN

Cell transition to a more aggressive mesenchymal-like phenotype is a hallmark of cancer progression that involves different steps and requires tightly regulated cell plasticity. SPARC (Secreted Protein Acidic and Rich in Cysteine) is a matricellular protein that promotes this transition in various malignant cell types, including melanoma cells. We found that suppression of SPARC expression in human melanoma cells compromised cell migration, adhesion, cytoskeleton structure, and cell size. These changes involved the Akt/mTOR pathway. Re-expression of SPARC or protein addition restored all the cell features. Suppression of SPARC expression was associated with increased Rac1-GTP levels and its membrane localization. Expression of the dominant negative mutant of Rac1 counteracted almost all the changes observed in SPARC-deficient cells. Overall, these data suggest that most of the SPARC-mediated effects occurred mainly through the blockade of Rac1 activity.


Asunto(s)
Plasticidad de la Célula , Osteonectina/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Citoesqueleto de Actina/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Regulación hacia Abajo , Humanos , Integrinas/química , Integrinas/metabolismo , Melanoma/metabolismo , Melanoma/patología , Osteonectina/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteína de Unión al GTP rac1/química
4.
J Cell Sci ; 122(Pt 4): 563-73, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19193871

RESUMEN

Stress granules are cytoplasmic mRNA-silencing foci that form transiently during the stress response. Stress granules harbor abortive translation initiation complexes and are in dynamic equilibrium with translating polysomes. Mammalian Staufen 1 (Stau1) is a ubiquitous double-stranded RNA-binding protein associated with polysomes. Here, we show that Stau1 is recruited to stress granules upon induction of endoplasmic reticulum or oxidative stress as well in stress granules induced by translation initiation blockers. We found that stress granules lacking Stau1 formed in cells depleted of this molecule, indicating that Stau1 is not an essential component of stress granules. Moreover, Stau1 knockdown facilitated stress granule formation upon stress induction. Conversely, transient transfection of Stau1 impaired stress granule formation upon stress or pharmacological initiation arrest. The inhibitory capacity of Stau1 mapped to the amino-terminal half of the molecule, a region known to bind to polysomes. We found that the fraction of polysomes remaining upon stress induction was enriched in Stau1, and that Stau1 overexpression stabilized polysomes against stress. We propose that Stau1 is involved in recovery from stress by stabilizing polysomes, thus helping stress granule dissolution.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión al ARN/fisiología , Animales , Células COS , Chlorocebus aethiops , Gránulos Citoplasmáticos/ultraestructura , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Inhibidores Enzimáticos/farmacología , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas HSP70 de Choque Térmico/biosíntesis , Células HeLa , Humanos , Ratones , Microscopía Confocal , Células 3T3 NIH , Estrés Oxidativo/fisiología , Polirribosomas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Estructura Terciaria de Proteína/fisiología , ARN Interferente Pequeño , Proteínas de Unión al ARN/química , Ratas , Estrés Fisiológico , Tapsigargina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA