Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Pept Sci ; 23(1): 13-15, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27699914

RESUMEN

Oxime ligation is a powerful tool in various bioconjugation strategies. Nevertheless, high reaction rates and quantitative yields are typically reported for aldehyde-derived compounds. In contrary, keto groups react much slower, with quantitative yields achieved at 5 h for low-molecular weight compounds and more than 15 h for polymers or dendrimers. In this communication, we report that oxime ligation proceeds rapidly with quantitative (>95%) conversion within 1.5-2 h in pure acetic acid. The practical utility of suggested technique is illustrated by the synthesis of peptide-steroid and peptide-polymer conjugates of model aminooxy-peptides. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Ácido Acético/química , Oximas/química , Péptidos/química , Esteroides/química , Aldehídos/química , Aminas/química , Secuencia de Aminoácidos , Oxidación-Reducción , Povidona/química , Factores de Tiempo
2.
Neurochem Res ; 33(5): 765-75, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-17940889

RESUMEN

Some derivatives more lipophylic than creatine, thus theoretically being capable to better cross the blood-brain barrier, were studied for their protective effect in mouse hippocampal slices. We found that N-amidino-piperidine is harmful to brain tissue, and that phosphocreatine is ineffective. Creatine, creatine-Mg-complex (acetate) and phosphocreatine-Mg-complex (acetate) increased the latency to population spike disappearance during anoxia. Creatine and creatine-Mg-complex (acetate) also increased the latency of anoxic depolarization, while the delay induced by phosphocreatine-Mg-complex (acetate) was of borderline significance (P = 0.056). Phosphocreatine-Mg-complex (acetate) significantly reduced neuronal hyperexcitability during anoxia, an effect that no other compound (including creatine itself) showed. For all parameters except reduced hyperexcitability the effects statistically correlated with tissue levels of creatine or phosphocreatine. Summing up, exogenous phosphocreatine and N-amidino piperidine are not useful for brain protection, while chelates of both creatine and phosphocreatine do replicate some of the known protective effects of creatine. In addition, phosphocreatine-Mg-complex (acetate) also reduced neuronal hyperexcitability during anoxia.


Asunto(s)
Creatina/administración & dosificación , Hipoxia/prevención & control , Animales , Creatina/metabolismo , Técnicas In Vitro , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA