RESUMEN
Isolated complex I deficiency is a common biochemical phenotype observed in pediatric mitochondrial disease and often arises as a consequence of pathogenic variants affecting one of the â¼65 genes encoding the complex I structural subunits or assembly factors. Such genetic heterogeneity means that application of next-generation sequencing technologies to undiagnosed cohorts has been a catalyst for genetic diagnosis and gene-disease associations. We describe the clinical and molecular genetic investigations of four unrelated children who presented with neuroradiological findings and/or elevated lactate levels, highly suggestive of an underlying mitochondrial diagnosis. Next-generation sequencing identified bi-allelic variants in NDUFA6, encoding a 15 kDa LYR-motif-containing complex I subunit that forms part of the Q-module. Functional investigations using subjects' fibroblast cell lines demonstrated complex I assembly defects, which were characterized in detail by mass-spectrometry-based complexome profiling. This confirmed a marked reduction in incorporated NDUFA6 and a concomitant reduction in other Q-module subunits, including NDUFAB1, NDUFA7, and NDUFA12. Lentiviral transduction of subjects' fibroblasts showed normalization of complex I. These data also support supercomplex formation, whereby the â¼830 kDa complex I intermediate (consisting of the P- and Q-modules) is in complex with assembled complex III and IV holoenzymes despite lacking the N-module. Interestingly, RNA-sequencing data provided evidence that the consensus RefSeq accession number does not correspond to the predominant transcript in clinically relevant tissues, prompting revision of the NDUFA6 RefSeq transcript and highlighting not only the importance of thorough variant interpretation but also the assessment of appropriate transcripts for analysis.
Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación/genética , Alelos , Secuencia de Aminoácidos , Complejo I de Transporte de Electrón/genética , Femenino , Fibroblastos/patología , Heterogeneidad Genética , Humanos , Lactante , Masculino , Mitocondrias/genética , Fenotipo , Alineación de SecuenciaRESUMEN
Analysis of blood phenylalanine is central to the monitoring of patients with phenylketonuria (PKU) and age-related phenylalanine target treatment-ranges (0-12 years; 120-360 µmol/L, and >12 years; 120-600 µmol/L) are recommended in order to prevent adverse neurological outcomes. These target treatment-ranges are based upon plasma phenylalanine concentrations. However, patients are routinely monitored using dried bloodspot (DBS) specimens due to the convenience of collection. Significant differences exist between phenylalanine concentrations in plasma and DBS, with phenylalanine concentrations in DBS specimens analyzed by flow-injection analysis tandem mass spectrometry reported to be 18% to 28% lower than paired plasma concentrations analyzed using ion-exchange chromatography. DBS specimens with phenylalanine concentrations of 360 and 600 µmol/L, at the critical upper-target treatment-range thresholds would be plasma equivalents of 461 and 768 µmol/L, respectively, when a reported difference of 28% is taken into account. Furthermore, analytical test imprecision and bias in conjunction with pre-analytical factors such as volume and quality of blood applied to filter paper collection devices to produce DBS specimens affect the final test results. Reporting of inaccurate patient results when comparing DBS results to target treatment-ranges based on plasma concentrations, together with inter-laboratory imprecision could have a significant impact on patient management resulting in inappropriate dietary change and potentially adverse patient outcomes. This review is intended to provide perspective on the issues related to the measurement of phenylalanine in blood specimens and to provide direction for the future needs of PKU patients to ensure reliable monitoring of metabolic control using the target treatment-ranges.
Asunto(s)
Pruebas con Sangre Seca/métodos , Fenilalanina/sangre , Fenilcetonurias/sangre , Aminoácidos/sangre , Cromatografía Líquida de Alta Presión/métodos , Pruebas con Sangre Seca/instrumentación , Humanos , Espectrometría de Masas en Tándem/métodosRESUMEN
Since the UK commenced newborn screening for isovaleric acidemia in 2015, changes in prescribing have increased the incidence of false positive (FP) results due to pivaloylcarnitine. A review of screening results between 2015 and 2022 identified 24 true positive (TP) and 84 FP cases, with pivalate interference confirmed in 76/84. Initial C5 carnitine (C5C) did not discriminate between FP and TP with median (range) C5C of 2.9 (2.0-9.6) and 4.0 (1.8->70) µmol/L, respectively, and neither did Precision Newborn Screening via Collaborative Laboratory Integrated Reports (CLIR), which identified only 1/47 FP cases. However, among the TP cases, disease severity showed a correlation with initial C5C in 'asymptomatic' individuals (n = 17), demonstrating a median (range) C5C of 3.0 (1.8-7.1) whilst 'clinically affected' patients (n = 7), showed a median (range) C5C of 13.9 (7.7-70) µmol/L. These findings allowed the introduction of dual cut-off values into the screening algorithm to reduce the incidence of FPs, with initial C5C results ≥ 5 µmol/L triggering urgent referral, and those >2.0 and <5.0 µmol/L prompting second-tier C5-isobar testing. This will avoid delayed referral in babies at particular risk whilst reducing the FP rate for the remainder.
RESUMEN
The Congenital Disorders of Glycosylation (CDG) are a devastating group of genetic disorders that encompass a spectrum of glycosylation defects and are characterized by the underglycosylation of or the presence of abnormal glycans on glycoproteins. The N-linked CDG disorders (Type I and II) are usually diagnosed in chemical pathology laboratories by an abnormal serum transferrin isoelectric focusing (IEF) pattern. Transferrin has been the protein of choice for CDG analysis because it is well characterized, highly abundant, and easily detected in plasma. However, IEF provides limited information on the glycosylation defect and requires a separate and extensive glycan analysis to diagnose CDG Type II. We have therefore developed a simple bead-based immunoaffinity and mass spectrometry-based assay to address these issues. Our method uses immuno-purified transferrin and proteolytic digestion followed by a rapid 30 min mass spectral analysis and allows us to identify both micro- and macroheterogeneity of transferrin by sequencing of peptides and glycopeptides. In summary, we have developed a simple, rapid test for N-linked glycosylation disorders that is a significant improvement on existing laboratory tests currently used for investigating defective N-linked glycosylation.
Asunto(s)
Trastornos Congénitos de Glicosilación/diagnóstico , Glicoproteínas/sangre , Transferrina/química , Transferrina/aislamiento & purificación , Cromatografía de Afinidad , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Glicoproteínas/aislamiento & purificación , Glicosilación , Humanos , Espectrometría de Masas , Péptidos/química , Péptidos/clasificación , Polisacáridos/sangre , Polisacáridos/química , Polisacáridos/clasificación , Transferrina/clasificaciónRESUMEN
Ornithine transcarbamylase deficiency (OTCD) is an X-linked defect of ureagenesis and the most common urea cycle disorder. Patients present with hyperammonemia causing neurological symptoms, which can lead to coma and death. Liver transplantation (LT) is the only curative therapy, but has several limitations including organ shortage, significant morbidity and requirement of lifelong immunosuppression. This study aims to identify the characteristics and outcomes of patients who underwent LT for OTCD. We conducted a retrospective study for OTCD patients from 5 UK centres receiving LT in 3 transplantation centres between 2010 and 2022. Patients' demographics, family history, initial presentation, age at LT, graft type and pre- and post-LT clinical, metabolic, and neurocognitive profile were collected from medical records. A total of 20 OTCD patients (11 males, 9 females) were enrolled in this study. 6/20 had neonatal and 14/20 late-onset presentation. 2/20 patients had positive family history for OTCD and one of them was diagnosed antenatally and received prospective treatment. All patients were managed with standard of care based on protein-restricted diet, ammonia scavengers and supplementation with arginine and/or citrulline before LT. 15/20 patients had neurodevelopmental problems before LT. The indication for LT was presence (or family history) of recurrent metabolic decompensations occurring despite standard medical therapy leading to neurodisability and quality of life impairment. Median age at LT was 10.5 months (6-24) and 66 months (35-156) in neonatal and late onset patients, respectively. 15/20 patients had deceased donor LT (DDLT) and 5/20 had living related donor LT (LDLT). Overall survival was 95% with one patient dying 6 h after LT. 13/20 had complications after LT and 2/20 patients required re-transplantation. All patients discontinued dietary restriction and ammonia scavengers after LT and remained metabolically stable. Patients who had neurodevelopmental problems before LT persisted to have difficulties after LT. 1/5 patients who was reported to have normal neurodevelopment before LT developed behavioural problems after LT, while the remaining 4 maintained their abilities without any reported issues. LT was found to be effective in correcting the metabolic defect, eliminates the risk of hyperammonemia and prolongs patients' survival.
RESUMEN
BACKGROUND: Web 2.0 internet tools and methods have attracted considerable attention as a means to improve health care delivery. Despite evidence demonstrating their use by medical professionals, there is no detailed research describing how Web 2.0 influences physicians' daily clinical practice. Hence this study examines Web 2.0 use by 35 junior physicians in clinical settings to further understand their impact on medical practice. METHOD: Diaries and interviews encompassing 177 days of internet use or 444 search incidents, analyzed via thematic analysis. RESULTS: Results indicate that 53% of internet visits employed user-generated or Web 2.0 content, with Google and Wikipedia used by 80% and 70% of physicians, respectively. Despite awareness of information credibility risks with Web 2.0 content, it has a role in information seeking for both clinical decisions and medical education. This is enabled by the ability to cross check information and the diverse needs for background and non-verified information. CONCLUSION: Web 2.0 use represents a profound departure from previous learning and decision processes which were normally controlled by senior medical staff or medical schools. There is widespread concern with the risk of poor quality information with Web 2.0 use, and the manner in which physicians are using it suggest effective use derives from the mitigating actions by the individual physician. Three alternative policy options are identified to manage this risk and improve efficiency in Web 2.0's use.
Asunto(s)
Instrucción por Computador/métodos , Instrucción por Computador/estadística & datos numéricos , Educación Médica Continua/métodos , Educación Médica Continua/estadística & datos numéricos , Internet/estadística & datos numéricos , Cuerpo Médico de Hospitales/estadística & datos numéricos , Evaluación Educacional , Inglaterra , Enseñanza/métodos , Enseñanza/estadística & datos numéricosRESUMEN
Machine perfusion of livers may provide a mechanism for extended preservation of marginal donor organs before transplantation, as well as a method for viability assessment. It has proved possible in a series of experimental porcine liver perfusions to maintain liver viability for up to 72 h. However, a reduction in bile production with associated histological evidence of cholestasis was seen after 10 h of perfusion, damaging the biliary canaliculi during the preservation period and leaving these organs in an unacceptable condition for transplantation. It was proposed that reduction in bile production was the result of a relentless depletion of available bile salts, gut recirculation not being possible and de-novo synthesis being unable to keep up with loss. This was proved by measuring porcine native bile acids within serial perfusate and bile samples using gas chromatography mass spectrophotometry. It was shown that all three native pig bile acids were decreased to 30% of their original value by 20 h of unsupplemented perfusion. An infusion of taurocholate managed to maintain bile production at physiological levels throughout the 20-h period (8 mL/h +/- 0.75). It was successfully incorporated by the porcine livers into bile. We propose to use this circuit as a novel means of preserving donor livers for transplantation in which the organ is maintained at normal body temperature and perfused with blood. This will reduce ischaemia reperfusion injury and may enable prolonged preservation. The modification described ensures optimal bile production over the entire perfusion period, preventing inspissation and subsequent damage to the canaliculus.