Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 517(4): 596-602, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31395343

RESUMEN

The pneumolysin (Ply) protein of Streptococcus pneumoniae is composed of four domains and possesses several different but related activities. In this study, recombinant Ply and two truncated forms, Ply domain 1-3 and Ply domain 4 (rPly4), were expressed and characterized regarding their participation in apoptosis, the stimulation of cytokine production, hemolytic activity and virulence. rPly4 activated murine bone marrow-derived dendritic cells in a Toll-like receptor (TLR) 4-dependent manner. The rPly4 alone was able to produce hemolytic activity at high concertation and penetrate the lipid bilayer. We further demonstrated that domain 4 of Ply involved in the virulence of the bacteria in mouse model. In the absence of apoptotic activity, the virulence level caused by rPly4 was similar to that of full length Ply. Our data suggested that domain 4 of Ply alone with TLR4 agonist and hemolytic activity may play roles in virulence of Streptococcus pneumoniae.


Asunto(s)
Hemólisis , Estreptolisinas/química , Estreptolisinas/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Femenino , Humanos , Ratones Endogámicos ICR , Dominios Proteicos , Proteínas Recombinantes/farmacología , Streptococcus pneumoniae/patogenicidad , Estreptolisinas/farmacología , Relación Estructura-Actividad , Virulencia/efectos de los fármacos
2.
Nucleic Acids Res ; 44(5): 2199-213, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26743002

RESUMEN

Double-strand breaks (DSBs) in chromosomes are the most challenging type of DNA damage. The yeast and mammalian Mre11-Rad50-Xrs2/Nbs1 (MRX/N)-Sae2/Ctp1 complex catalyzes the resection of DSBs induced by secondary structures, chemical adducts or covalently-attached proteins. MRX/N also initiates two parallel DNA damage responses-checkpoint phosphorylation and global SUMOylation-to boost a cell's ability to repair DSBs. However, the molecular mechanism of this SUMO-mediated response is not completely known. In this study, we report that Saccharomyces cerevisiae Mre11 can non-covalently recruit the conjugated SUMO moieties, particularly the poly-SUMO chain. Mre11 has two evolutionarily-conserved SUMO-interacting motifs, Mre11(SIM1) and Mre11(SIM2), which reside on the outermost surface of Mre11. Mre11(SIM1) is indispensable for MRX assembly. Mre11(SIM2) non-covalently links MRX with the SUMO enzymes (E2/Ubc9 and E3/Siz2) to promote global SUMOylation of DNA repair proteins. Mre11(SIM2) acts independently of checkpoint phosphorylation. During meiosis, the mre11(SIM2) mutant, as for mre11S, rad50S and sae2Δ, allows initiation but not processing of Spo11-induced DSBs. Using MRX and DSB repair as a model, our work reveals a general principle in which the conjugated SUMO moieties non-covalently facilitate the assembly and functions of multi-subunit protein complexes.


Asunto(s)
Reparación del ADN , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Roturas del ADN de Doble Cadena , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Meiosis , Modelos Moleculares , Fosforilación , Unión Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Sumoilación , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
3.
J Immunol ; 192(9): 4233-41, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24683188

RESUMEN

Cross-presentation is a key function of dendritic cells (DCs), which present exogenous Ags on MHC class I molecules to prime CTL responses. The effects of TLR triggering on the cross-presentation of exogenous Ags by DCs remain unclear. In this study, we used synthetic dipalmitoylated peptides and TLR2 agonist-conjugated peptides as models to elucidate the mechanisms of TLR2-mediated cross-presentation. We observed that the internalization of dipalmitoylated peptides by bone marrow-derived DCs was facilitated by TLR2 via clathrin-mediated endocytosis. The administration of these dipalmitoylated peptide-pulsed bone marrow-derived DCs eliminated established tumors through TLR2 signaling. We further demonstrated that the induction of Ag-specific CTL responses and tumor regression by dipalmitoylated peptides was TAP independent. In addition, presentation of dipalmitoylated peptides by MHC class I molecules was blocked in the presence of an endosomal acidification inhibitor (chloroquine) or a lysosomal degradation inhibitor (Z-FL-COCHO). The endocytosed dipalmitoylated peptide also passed rapidly from early endosome Ag-1-positive endosomes to RAS-related GTP-binding protein 7 (Rab7)-associated late endosomes compared with their nonlipidated counterparts. Furthermore, we found that dipalmitoylated peptide-upregulated Rab7 expression correlated with Ag presentation via the TLR2/MyD88 pathway. Both JNK and ERK signaling pathways are required for upregulation of Rab7. In summary, our data suggest that TLR2-mediated cross-presentation occurs through the upregulation of Rab7 and a TAP-independent pathway that prime CTL responses.


Asunto(s)
Reactividad Cruzada/inmunología , Citotoxicidad Inmunológica/inmunología , Células Dendríticas/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 2/inmunología , Animales , Western Blotting , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Neoplasias Experimentales/inmunología , Linfocitos T Citotóxicos/inmunología , Proteínas de Unión al GTP rab/inmunología , Proteínas de Unión a GTP rab7
4.
J Biomed Sci ; 22: 65, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26245825

RESUMEN

BACKGROUND: Opportunistically nosocomial infections in hospitalized patients are often related to Clostridium difficile infections (CDI) due to disruption of the intestinal micro-flora by antibiotic therapies during hospitalization. Clostridial exotoxins A and B (TcdA and TcdB) specifically bind to unknown glycoprotein(s) in the host intestine, disrupt the intestinal barrier leading to acute inflammation and diarrhea. The C-terminal receptor binding domain of TcdA (A-rRBD) has been shown to elicit antibody responses that neutralize TcdA toxicity in Vero cell cytotoxicity assays, but not effectively protect hamsters against a lethal dose challenge of C. difficile spores. To develop an effective recombinant subunit vaccine against CDI, A-rRBD was lipidated (rlipoA-RBD) as a rational design to contain an intrinsic adjuvant, a toll-like receptor 2 agonist and expressed in Escherichia coli. RESULTS: The purified rlipoA-RBD was characterized immunologically and found to have the following properties: (a) mice, hamsters and rabbits vaccinated with 3 µg of rlipoA-RBD produced strong antibody responses that neutralized TcdA toxicity in Vero cell cytotoxicity assays; furthermore, the neutralization titer was comparable to those obtained from antisera immunized either with 10 µg of TcdA toxoid or 30 µg of A-rRBD; (b) rlipoA-RBD elicited immune responses and protected mice from TcdA challenge, but offered insignificant protection (10 to 20 %) against C. difficile spores challenge in hamster models; (c) only rlipoA-RBD formulated with B-rRBD consistently confers protection (90 to 100 %) in the hamster challenge model; and (d) rlipoA-RBD was found to be 10-fold more potent than A-rRBD as an adjuvant to enhancing immune responses against a poor antigen such as ovalbumin. CONCLUSION: These results indicate that rlipoA-RBD formulated with B-rRBD could be an excellent vaccine candidate for preclinical studies and future clinical trials.


Asunto(s)
Vacunas Bacterianas/inmunología , Clostridioides difficile/inmunología , Enterocolitis Seudomembranosa/inmunología , Lipoproteínas/inmunología , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/inmunología , Vacunas Bacterianas/genética , Vacunas Bacterianas/farmacología , Chlorocebus aethiops , Clostridioides difficile/genética , Cricetinae , Enterocolitis Seudomembranosa/genética , Enterocolitis Seudomembranosa/patología , Enterocolitis Seudomembranosa/prevención & control , Enterotoxinas/genética , Enterotoxinas/inmunología , Lipoproteínas/genética , Lipoproteínas/farmacología , Ratones , Ratones Endogámicos BALB C , Conejos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/farmacología , Células Vero
5.
Mol Cancer ; 13: 60, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24642245

RESUMEN

BACKGROUND: Although cytotoxic T lymphocytes (CTLs) play a major role in eradicating cancer cells during immunotherapy, the cancer-associated immunosuppressive microenvironment often limits the success of such therapies. Therefore, the simultaneous induction of cancer-specific CTLs and reversal of the immunosuppressive tumor microenvironment may be more effectively achieved through a single therapeutic vaccine. A recombinant lipoprotein with intrinsic Toll-like receptor 2 (TLR2) agonist activity containing a mutant form of E7 (E7m) and a bacterial lipid moiety (rlipo-E7m) has been demonstrated to induce robust CTL responses against small tumors. This treatment in combination with other TLR agonists is able to eliminate large tumors. METHODS: Mouse bone marrow-derived dendritic cells (DCs) were employed to determine the synergistic production of pro-inflammatory cytokines upon combination of rlipo-E7m and other TLR agonists. Antigen-specific CTL responses were investigated using immunospots or in vivo cytolytic assays after immunization in mice. Mice bearing various tumor sizes were used to evaluate the anti-tumor effects of the formulation. Specific subpopulations of immunosuppressive cells in the tumor infiltrate were quantitatively determined by flow cytometry. RESULTS: We demonstrate that a TLR9 agonist (unmethylated CpG oligodeoxynucleotide, CpG ODN) enhances CTL responses and eradicates large tumors when combined with rlipo-E7m. Moreover, combined treatment with rlipo-E7m and CpG ODN effectively increases tumor infiltration by CTLs and reduces the numbers of myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) in the tumor microenvironment. CONCLUSION: These findings suggest that the dramatic anti-tumor effects of the recombinant lipoprotein together with CpG ODN may reflect the amplification of CTL responses and the repression of the immunosuppressive environment. This promising approach could be applied for the development of additional therapeutic cancer vaccines.


Asunto(s)
Vacunas contra el Cáncer/farmacología , Lipoproteínas/farmacología , Oligodesoxirribonucleótidos/farmacología , Microambiente Tumoral/inmunología , Neoplasias del Cuello Uterino/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Recombinantes/farmacología , Linfocitos T Citotóxicos/inmunología , Receptor Toll-Like 9/agonistas , Microambiente Tumoral/efectos de los fármacos , Neoplasias del Cuello Uterino/metabolismo
6.
Arch Virol ; 158(7): 1523-31, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23456422

RESUMEN

We have previously demonstrated that vaccination with a subunit dengue vaccine containing a consensus envelope domain III with aluminum phosphate elicits neutralizing antibodies against all four serotypes of dengue virus in mice. In this study, we evaluated the immunogenicity of the subunit dengue vaccine in non-human primates. After vaccination, monkeys that received the subunit vaccine with aluminum phosphate developed a significantly strong and long-lasting antibody response. A specific T cell response with cytokine production was also induced, and this correlated with the antibody response. Additionally, neutralizing antibodies against serotype 2 were detected in two of three monkeys. The increase in serotype-2-specific antibody titers and avidity observed in these two monkeys suggested that a serotype-2-biased antibody response occurs. These data provide evidence that a protective neutralizing antibody response was successfully elicited in non-human primates by the dengue subunit vaccine with aluminum phosphate adjuvant.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra el Dengue/inmunología , Virus del Dengue/inmunología , Proteínas del Envoltorio Viral/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Compuestos de Aluminio/administración & dosificación , Animales , Afinidad de Anticuerpos , Citocinas/metabolismo , Vacunas contra el Dengue/administración & dosificación , Vacunas contra el Dengue/genética , Virus del Dengue/genética , Haplorrinos , Fosfatos/administración & dosificación , Linfocitos T/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Proteínas del Envoltorio Viral/genética
7.
Emerg Microbes Infect ; 12(2): 2272656, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37855122

RESUMEN

Pneumococcal disease is a major threat to public health globally, impacting individuals across all age groups, particularly infants and elderly individuals. The use of current vaccines has led to unintended consequences, including serotype replacement, leading to a need for a new approach to combat pneumococcal disease. A promising solution is the development of a broad-spectrum pneumococcal vaccine. In this study, we present the development of a broad-spectrum protein-based pneumococcal vaccine that contains three pneumococcal virulence factors: rlipo-PsaA (lipidated form), rPspAΔC (truncated form), and rPspCΔC (truncated form). Intranasal immunization with rlipo-PsaA, rPspAΔC, and rPspCΔC (LAAC) resulted in significantly higher IgG titres than those induced by administration of nonlipidated rPsaA, rPspAΔC, and rPspCΔC (AAC). Furthermore, LAAC immunization induced the production of higher IgA titres in vaginal washes, feces, and sera in mice, indicating that LAAC can induce systemic mucosal immunity. In addition, administration of LAAC also induced Th1/Th17-biased immune responses and promoted opsonic phagocytosis of Streptococcus pneumoniae strains of various serotypes, implying that the immunogenicity of LAAC immunization provides a protective effect against pneumococcal infection. Importantly, challenge data showed that the LAAC-immunized mice had a reduced bacterial load not only for several serotypes of the 13-valent conjugate pneumococcal vaccine (PCV13) but also for selected non-PCV13 serotypes. Consistently, LAAC immunization increased the survival rate of mice after bacterial challenge with both PCV13 and non-PCV13 serotypes. In conclusion, our protein-based pneumococcal vaccine provides protective effects against a broad spectrum of Streptococcus pneumoniae serotypes.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Humanos , Lactante , Femenino , Ratones , Animales , Anciano , Inmunidad Mucosa , Vacunas Neumococicas , Infecciones Neumocócicas/microbiología , Inmunización , Anticuerpos Antibacterianos
8.
Appl Microbiol Biotechnol ; 93(4): 1539-52, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21822641

RESUMEN

Bacterial lipoproteins are crucial antigens for protective immunity against bacterial pathogens. Expression of exogenous lipoproteins in Escherichia coli at high levels is thought to be an extremely difficult endeavor because it frequently results in incomplete or absent lipid modification. Previously, we identified a fusion sequence (D1) from a Neisseria meningitidis lipoprotein that induced a non-lipidated protein, E3 (the domain III of the dengue virus envelope protein), to become lipidated. However, without optimizing the growth conditions, some of the D1-fusion proteins were not lipidated. Here, we report the influence of medium components on the expression of recombinant lipoproteins in E. coli. For high-level expression of mature lipoproteins in the C43 (DE3) strain, M9 medium was better than M63 and the rich medium. Furthermore, we analyzed the influence of other media factors (including nitrogen and carbon sources, phosphate, ferrous ions, calcium, magnesium, and pH) on the levels of lipoprotein expression. The results showed that excess nitrogen sources and phosphate in M9 medium could increase the amount of immature lipoproteins, and glucose was a better carbon source than glycerol for expressing mature lipoproteins. We also found that lipoproteins tended to be completely processed in the alkaline environment, even in the nutrient-rich medium. Additional constructs expressing different immunogens or lipid signal peptides as targets were also utilized, demonstrating that these targets could be expressed as completely mature lipoproteins in the M9 medium but not in the rich medium. Our results provide the useful information for expressing mature exogenous lipoproteins in E. coli.


Asunto(s)
Medios de Cultivo/química , Escherichia coli/genética , Escherichia coli/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virus del Dengue/genética , Perfilación de la Expresión Génica , Neisseria meningitidis/genética , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
Proteomics ; 11(13): 2620-7, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21630453

RESUMEN

The structural analysis of post-translational modifications (PTMs) of lipoproteins is difficult due to the hydrophobic properties of their fatty acid moieties. At the present time, the relative positions of fatty acid components on the N-acyl-S-diacylglycerylcysteine core structure has not been specifically identified in any natural or bacterial expressed recombinant lipoproteins. In this study, we describe a rapid solid-phase extraction using acetonitrile and isopropanol method that can be performed manually to isolate large amounts of relatively pure lipopeptides generated by the limited tryptic-digestion of recombinant lipoproteins. Using these lipopeptides and LC/MS mass spectra analysis, two groups of N-terminal lipidated (diacyl or triacyl) molecules that differ by one fatty acid unit were successfully identified. This LC/MS method also provided the separation of lipopeptides differing by 14 Da for the on-line MS identification. Multiple-stage fragmentation analyses of the di- and triacyl lipopeptides using both the positive and negative ion modes enabled to identify the putative structure of the N-acyl-S-diacylglycerylcysteine containing an amide bond to palmitic acid at the N-terminal cysteine, a palmitic acid at sn1 position, and an unsaturated fatty acid of either hexadecenoic acid, cyclopropaneoctanoic acid, oleic acid and nonadecenoic acid at sn2 position of diacylglycerol residue through ester bonding. For diacyl lipoprotein, the saturated palmitoyl fatty acid group is absent at sn1 position of glycerol-derived lipid residue of lipopeptide.


Asunto(s)
Bacterias/química , Cromatografía Líquida de Alta Presión/métodos , Lipopéptidos/química , Lipopéptidos/aislamiento & purificación , Lipoproteínas/química , Espectrometría de Masas/métodos , Lipoproteínas/genética , Estructura Molecular , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
10.
Cells ; 9(5)2020 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-32397494

RESUMEN

Microbial proteins have recently been found to have more benefits in clinical disease treatment because of their better-developed strategy and properties than traditional medicine. In this study, we investigated the effectiveness of a truncated peptide synthesized from the C-terminal sequence of pneumolysin, i.e., C70PLY4, in Streptococcus pneumoniae, in treating chronic inflammatory conditions. It has been shown that C70PLY4 significantly blocks the transendothelial migration of neutrophils and attenuates the formation of atherosclerotic plaque and the secretion of soluble forms of the intercellular adhesion molecule-1 (ICAM-1), the vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in high-fat-diet/streptozotocin-induced inflammatory rats. The mechanism and the docking simulation analysis further indicated that C70PLY4 might serve as a Toll-like receptor 4 (TLR4) antagonist by competing for the binding site of MD2, an indispensable protein for lipopolysaccharide (LPS)-TLR4 interaction signaling, on the TLR4 structure. Moreover, compared to the full-length PLY, C70PLY4 seems to have no cytotoxicity in human vascular endothelial cells. Our study elucidated a possible therapeutic efficacy of C70PLY4 in reducing chronic inflammatory conditions and clarified the underlying mechanism. Thus, our findings identify a new drug candidate that, by blocking TLR4 activity, could be an effective treatment for patients with chronic inflammatory diseases.


Asunto(s)
Inflamación/tratamiento farmacológico , Proteínas Mutantes/farmacología , Proteínas Mutantes/uso terapéutico , Streptococcus pneumoniae/metabolismo , Estreptolisinas/farmacología , Receptor Toll-Like 4/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/farmacología , Sitios de Unión , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Dieta Alta en Grasa , Selectina E/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Lipopolisacáridos , Ratones , Simulación del Acoplamiento Molecular , Proteínas Mutantes/química , FN-kappa B/metabolismo , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Fosforilación/efectos de los fármacos , Solubilidad , Estreptolisinas/química , Estreptozocina , Receptor Toll-Like 4/metabolismo , Migración Transendotelial y Transepitelial/efectos de los fármacos , Molécula 1 de Adhesión Celular Vascular/metabolismo
11.
Biochem Biophys Res Commun ; 383(1): 27-31, 2009 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-19324009

RESUMEN

The neutralization titer of a hemagglutinin (HA)-specific neutralizing antibody against new isolates reflect both the antigenic drift and the conformation status of HA protein in these new influenza viruses. Since most antigenic sites are in the HA1 domain of HA, using HA1 domain of influenza virus as antigen is of great importance in vaccine development. In this study, we investigate different purification processes for optimizing the immunological properties of an Escherichia coli-expressed HA1 domain (rH5HA1) of influenza H5N1 virus. rH5HA1 was expressed as inclusion bodies and extracted with 6M guanidine hydrochloride (GnHCl)/PBS buffer. The best condition for generating HA1-specific neutralization determinants is on-column oxidative refolding procedures with GSH/GSSG and l-arginine buffer. Others refolding procedures such as using high-pH buffer and/or different detergent solubilizations were found to be ineffective producing neutralization epitope recognized by a HA1-specific neutralizing monoclonal antibody that was raised against H5N1 virus.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Clonación Molecular , Escherichia coli/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H5N1 del Virus de la Influenza A/química , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/química , Vacunas contra la Influenza/genética , Datos de Secuencia Molecular , Pruebas de Neutralización , Pliegue de Proteína , Estructura Terciaria de Proteína
12.
Pharm Res ; 26(8): 1856-62, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19415466

RESUMEN

PURPOSE: To enhance the water affinity of W/O emulsion-adjuvanted vaccines, we used three bioresorbable polymers named PEG-b-PLA, PEG-b-PCL, and PEG-b-PLACL as hydrophilic emulsifier to stabilize the interfaces between the oily Montanide ISA 51 adjuvant and the antigen media. METHODS: Polymers were synthesized by ring-opening polymerization of lactide and/or epsilon-caprolactone in the presence of monomethoxy PEG. (1)H NMR and GPC data showed that obtained polymers consisted of 70 wt.% hydrophilic PEG block and 30 wt.% lipophilic PLA, PCL, PLACL block with molecular weights of 7,000. RESULTS: The polymer-stabilized ISA51 emulsions have high affinity to water, such that the stock of antigen-encapsulating emulsion could be re-dispersed into PBS before injection, thus yielding stable and injectable W/O/W emulsion nanoparticles. Immunogenicity studies showed that PEG-b-PLACL/ISA51/PBS-formulated ovalbumin with only 5% of ISA51 oily adjuvant could induce the same level of antibody titers as those induced by PBS/ISA51-formulated ovalbumin. CONCLUSIONS: The novel multi-phase emulsions increase fluidity and conceptually diminish local reactions with respect to the W/O type vaccines produced from the same oil. These features are of great interest for applications in candidate vaccine delivery, especially for further optimization of alternative immunization routes, such as intramuscular, transdermal or mucosal administration.


Asunto(s)
Adyuvantes Inmunológicos , Emulsiones , Polímeros/química , Animales , Cromatografía en Gel , Ensayo de Inmunoadsorción Enzimática , Femenino , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos BALB C
13.
Front Immunol ; 10: 1839, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428106

RESUMEN

A major challenge for vaccine development is targeting antigens to dendritic cells (DCs) in vivo, enabling cross-presentation, and inducing the memory responses. Fcγ receptors (FcγRs) are expressed on many cell types including DCs. Therefore, targeting of antigen to DCs via FcγRs is an attractive strategy for vaccine development. This study employ formyl peptide receptor-like 1 inhibitory protein (FLIPr), an FcγR binding protein secreted by Staphylococcus aureus, to deliver antigen to DCs. Our results show that FLIPr is a competent vehicle in delivering antigen to CD8+ DCs for induction of potent immunities without extra adjuvant formulation. Fusion antigen with FLIPr enables effective antigen presentation on both MHC class II and class I to induce memory T cell responses. Altogether, using FLIPr as an antigen delivery vector has great potential to apply antigens for cancer immunotherapy as well as other infectious disease vaccines.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Neoplasias/inmunología , Receptores de Formil Péptido/inmunología , Animales , Presentación de Antígeno/inmunología , Reactividad Cruzada/inmunología , Femenino , Memoria Inmunológica/inmunología , Inmunoterapia/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de IgG/inmunología , Staphylococcus aureus/inmunología
14.
Front Immunol ; 9: 822, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755461

RESUMEN

Survivin is overexpressed in various types of human cancer, but rarely expressed in terminally differentiated adult tissues. Thus, survivin is a potential target antigen for a cancer vaccine. However, self-tumor-associated antigens are not highly immunogenic. Bacteria-derived lipoproteins can activate antigen-presenting cells through their toll-like receptors to enhance immune responses. In this context, lipidated survivin is an attractive candidate for cancer immunotherapy. In the present study, recombinant lipidated human survivin (LSur) was prepared from an Escherichia coli-based system. We investigated whether LSur is efficiently captured by antigen-presenting cells then facilitating effective induction of survivin cross-presentation and generation of immunity against cancer cells. Our results demonstrate that LSur, but not its non-lipidated counterpart, can activate mouse bone-marrow-derived-dendritic cells (BMDCs) to enhance cytokine (IL-6, TNF-α, and IL-12) secretion and costimulatory molecules (CD40, CD80, CD86, and MHC II) expression. However, the pathways involved in the capture of the recombinant lipidated antigen by antigen-presenting cells have not yet been elucidated. To this end, we employ various endocytosis inhibitors to study the effect on LSur internalization. We show that the internalization of LSur is suppressed by the inhibition of various routes of endocytosis. These results suggest that endocytosis of LSur by BMDCs can be mediated by multiple mechanisms. Furthermore, LSur is trafficked to the early endosome after internalization by BMDCs. These features of LSur are advantageous for cross-presentation and the induction of antitumor immunity. We demonstrate that immunization of C57BL/6 mice with LSur under treatment with exogenous adjuvant-free formulation induce survivin-specific CD8+ T-cell responses and suppress tumor growth. The antitumor responses are mediated by CD8+ cells. Our findings indicate that LSur is a potential candidate for stimulating protective antitumor immunity. This study suggests that lipidated tumor antigens may be a promising approach for raising a robust antitumor response in cancer immunotherapy.


Asunto(s)
Presentación de Antígeno , Antígenos de Neoplasias/inmunología , Lípidos/química , Neoplasias/terapia , Survivin/química , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Citocinas/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Endocitosis , Escherichia coli/genética , Femenino , Humanos , Inmunización , Inmunoterapia , Ratones , Ratones Endogámicos C57BL , Neoplasias/inmunología , Proteínas Recombinantes/química , Survivin/genética
15.
Am J Cancer Res ; 8(12): 2528-2537, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30662809

RESUMEN

The E6 and E7 oncoproteins of human papillomavirus (HPV) are ideal targets for developing immunotherapeutic approaches to treat HPV-associated tumors. Our previous studies showed that a recombinant lipidated HPV16 E7 mutant (rlipo-E7m) with inactivation of the E7 oncogenic functions can activate antigen presenting cells through Toll-like receptor 2 (TLR2) and induce antitumor immunity. Given that some HPV-associated tumors overexpress E6 but not E7, it is necessary to include therapeutic agents containing HPV E6 in therapeutic vaccine development to broaden the utility of the vaccine. In this study, we further incorporated a mutant HPV16 E6 (E6m) into rlipo-E7m to generate rlipo-E6mE7m, which could elicit both E6- and E7-specific immune responses after immunization. The rlipo-E6mE7m immunization induced higher levels of T cell proliferation and cytotoxic T lymphocyte response than the nonlipidated recombinant E6mE7m (rE6mE7m) immunization. Accordingly, a single-dose administration of rlipo-E6mE7m at day 7 after tumor inoculation in mice showed complete inhibition of tumor growth, whereas administration of rE6mE7m did not. These results demonstrated that rlipo-E6mE7m could be used in tumors with E6 and/or E7 expression via the induction of E6- and E7-specific immunity.

16.
ACS Appl Mater Interfaces ; 10(15): 12553-12561, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29595053

RESUMEN

To accomplish an innovative vaccine design, there are two key challenges: developing formulations that avoid cold chain shipment and finding a delivery vehicle that is absorbable in vivo. Here, we explored the design and performance of a colloidal vesicle that enabled us to consider both challenges. We used polymeric bioresorbable amphiphiles as surface-active agents for stabilizing oily/aqueous interfaces and formed a colloidal vehicle named polysorbasome (PSS, polymeric absorbable vesicle), without using conventional emulsifiers such as sorbitan esters or their ethoxylates. Homogenizing the oil/water compartments forms a colloid containing an aqueous solution in its core and provides an oily barrier that isolates the encapsulated material from external materials. In this form, the PSS serves as a depot for sustained delivery of vaccine antigens. Following vaccination, the antigen-specific antibodies and the cell-mediated immunity can be manipulated after the antigen being formulated with PSS particles. Then, the degradability intrinsic to the polymeric bioresorbable amphiphiles complies with the destruction and further absorbance of the vehicles in vivo. The structural features of these versatile vesicles based on bioresorbable amphiphilic engineering may provide new insights into vaccine delivery.


Asunto(s)
Implantes Absorbibles , Coloides , Sistemas de Liberación de Medicamentos , Polímeros , Vacunas
17.
Toxins (Basel) ; 10(1)2017 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-29295601

RESUMEN

Assessing the neutralization capability of nonlethal but medically relevant toxins in venom has been a challenging task. Nowadays, neutralization efficacy is evaluated based simply on the survival rates of animals injected with antivenom together with a predefined dose of venom, which can determine potency against neurotoxicity but not validate the capability to neutralize cytotoxin-induced complications. In this study, a high correlation with in-vivo and in-vitro neutralization assays was established using the immunoreactive peptides identified from short-chain neurotoxin and cytotoxin A3. These peptides contain conserved residues associated with toxin activities and a competition assay indicated that these peptides could specifically block the antibody binding to toxin and affect the neutralization potency of antivenom. Moreover, the titers of peptide-specific antibody in antivenoms or mouse antisera were determined by enzyme-linked immunosorbent assay (ELISA) simultaneously, and the results indicated that Taiwanese bivalent antivenom (BAV) and Vietnamese snake antivenom-Naja (SAV-Naja) exhibited superior neutralization potency against the lethal effect of short-chain neurotoxin (sNTX) and cytotoxicity of cardiotoxin/cytotoxin (CTX), respectively. Thus, the reported peptide ELISA shows not only its potential for antivenom prequalification use, but also its capability of justifying the cross-neutralization potency of antivenoms against Naja atra venom toxicity.


Asunto(s)
Antivenenos/farmacología , Proteínas Neurotóxicas de Elápidos/toxicidad , Péptidos/inmunología , Animales , Supervivencia Celular/efectos de los fármacos , Células HL-60 , Humanos , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Naja naja , Síndromes de Neurotoxicidad/prevención & control
18.
Sci Rep ; 7(1): 17297, 2017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29229937

RESUMEN

Synthetic phosphorothiolate-modified CpG-oligodeoxynucleotides (CpG-ODNs) are potent immune stimuli. Toll-like receptor (TLR) 9 and TLR21 are their cellular receptors in different species. The structural requirements for CpG-ODN to strongly activate TLR9 have been relatively well studied, but studies on TLR21 are in their infancy. Therefore, in this study, we investigated the interaction between CpG-ODNs and TLR21s from groupers (Epinephelus spp.), which are economically important fish species. We cloned the cDNA of giant grouper (E. lanceolatus) TLR21, and compared its sequence with orange-spotted grouper (E. coioides) TLR21A and TLR21B. These three receptors were activated by CpG-ODNs containing the GTCGTT motif but not by those containing the GACGTT motif. We developed two CpG-ODNs that contained 19 phosphorothiolated deoxynucleotides with one or two GTCGTT motifs. These CpG-ODNs had better activity on grouper TLR21s than currently developed CpG-ODNs, and produced similar immune stimulatory profiles when applied to cells isolated from orange-spotted grouper. The developed CpG-ODNs also effectively activated both human and mouse TLR9-mediated NF-κB activation and cytokine productions. These findings suggest that the GTCGTT motif is required for CpG-ODNs to activate grouper TLR21s, and that the CpG-ODNs that were developed for grouper TLR21s contain structures that effectively activate human and mouse TLR9s.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Riñón/inmunología , Oligodesoxirribonucleótidos/farmacología , Bazo/inmunología , Receptores Toll-Like/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Ratones , Bazo/efectos de los fármacos , Bazo/metabolismo , Receptores Toll-Like/genética
19.
Oncotarget ; 7(21): 30804-19, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27127171

RESUMEN

The induction of long-lived effector CD8+ T cells is key to the development of efficient cancer vaccines. In this study, we demonstrated that a Toll-like receptor 2 (TLR2) agonist-fused antigen increased antigen presentation via TLR2 signaling and induced effector memory-like CD8+ T cells against cancer after immunization. The N-terminus of ovalbumin (OVA) was biologically fused with a bacterial lipid moiety TLR2 agonist to produce a recombinant lipidated ovalbumin (rlipo-OVA). We demonstrated that rlipo-OVA activated bone marrow-derived dendritic cells (BM-DCs) maturation and increased antigen presentation by major histocompatibility complex (MHC) class I via TLR2. After immunization, rlipo-OVA skewed the immune response towards T helper (Th) 1 and induced OVA-specific cytotoxic T lymphocyte (CTL) responses. Moreover, immunization with rlipo-OVA induced higher numbers of effector memory (CD44+CD62L-) CD8+ T cells compared with recombinant ovalbumin (rOVA) alone or rOVA mixed with the TLR2 agonist Pam3CSK4. Accordingly, the CD27+CD43+ effector memory CD8+ T cells expressed high levels of the long-lived CD127 marker. The administration of rlipo-OVA could inhibit tumor growth, but the anti-tumor effects were lost after the depletion of CD8 or CD127 cells in vivo. These findings suggested that the TLR2 agonist-fused antigen induced long-lived memory CD8+ T cells for efficient cancer therapy.


Asunto(s)
Presentación de Antígeno/inmunología , Vacunas contra el Cáncer/inmunología , Leucemia Experimental/terapia , Ovalbúmina/inmunología , Proteínas Recombinantes de Fusión/inmunología , Linfocitos T Citotóxicos/inmunología , Receptor Toll-Like 2/agonistas , Animales , Células de la Médula Ósea/inmunología , Antígenos CD8/metabolismo , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Células Dendríticas/inmunología , Femenino , Antígenos de Histocompatibilidad Clase I/inmunología , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Leucemia Experimental/inmunología , Lipopéptidos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Transducción de Señal/inmunología , Linfocitos T Citotóxicos/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo
20.
Sci Rep ; 6: 36732, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27827451

RESUMEN

This study describes the feasibility and adjuvant mechanism of a degradable emulsion for tuning adaptive immune responses to a vaccine antigen. We featured a mouse model with ovalbumin (OVA) as the antigen to deepen our understanding of the properties of a degradable emulsion-based adjuvant, dubbed PELC, interacting with immune cells and to elucidate their roles in vaccine immunogenicity in vivo. First, we demonstrated that the emulsion, which is stabilized by an amphiphilic bioresorbable polymer, shows degradation in mimic human body conditions and considerable tolerance in vivo. Then, we confirmed the model protein could be loaded into the emulsion and released from the matrix in a sustained manner, subsequently driving the production of antigen-specific antibodies. We also comprehended that PELC not only recruits antigen-presenting cells (APCs) to the injection site but also induces the activation of the recruited APCs and migration to the draining lymph nodes. As an adjuvant for cancer immunotherapy, PELC-formulated OVA could strongly enhance antigen-specific T-cell responses as well as anti-tumor ability with respected to non-formulated OVA, using OVA protein/EG7 cells as a tumor antigen/tumor cell model. Accordingly, our data paved the way for the clinical application of degradable emulsions based on amphiphilic bioresorbable polymers as vaccine adjuvants.


Asunto(s)
Adyuvantes Inmunológicos , Antígenos de Neoplasias , Poliésteres , Polietilenglicoles , Vacunas , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacocinética , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos/inmunología , Células Presentadoras de Antígenos/inmunología , Antígenos de Neoplasias/química , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/farmacología , Línea Celular , Emulsiones , Femenino , Ratones , Ratones Endogámicos BALB C , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Polietilenglicoles/farmacología , Linfocitos T/inmunología , Vacunas/química , Vacunas/inmunología , Vacunas/farmacocinética , Vacunas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA