Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pediatr Res ; 95(7): 1749-1753, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38280953

RESUMEN

BACKGROUND: The microbiological safety of donor milk (DM) is commonly ensured by Holder pasteurization (HoP, 62.5 °C for 30 min) in human milk banks despite its detrimental effects on bioactive factors. We compared the antimicrobial properties of DM after Holder pasteurization treatment or High Hydrostatic Pressure processing (HHP, 350 MPa at 38 °C), a non-thermal substitute for DM sterilization. METHODS: We assessed lactoferrin and lysozyme concentrations in raw, HHP- and HoP-treated pools of DM (n = 8). The impact of both treatments was evaluated on the growth of Escherichia coli and Group B Streptococcus in comparison with control media (n = 4). We also addressed the effect of storage of HHP treated DM over a 6-month period (n = 15). RESULTS: HHP milk demonstrated similar concentrations of lactoferrin compared with raw milk, while it was significantly decreased by HoP. Lysozyme concentrations remained stable regardless of the condition. Although a bacteriostatic effect was observed against Escherichia coli at early timepoints, a sharp bactericidal effect was observed against Group B Streptococcus. Unlike HoP, these results were significant for HHP compared to controls. Stored DM was well and safely preserved by HHP. CONCLUSION: Our study demonstrates that this alternative sterilization method shows promise for use with DM in human milk banks. IMPACT: Antimicrobial activity of donor milk after High Hydrostatic Pressure treatment has not been clearly evaluated. Donor milk lactoferrin is better preserved by High Hydrostatic Pressure than conventional Holder pasteurization, while lysozyme concentration is not affected by either treatment. As with Holder pasteurization, High Hydrostatic Pressure preserves donor milk bacteriostatic activity against E. coli in addition to bactericidal activity against Group B Streptococcus. Donor milk treated by High Hydrostatic Pressure can be stored safely for 6 months.


Asunto(s)
Escherichia coli , Presión Hidrostática , Lactoferrina , Bancos de Leche Humana , Leche Humana , Muramidasa , Pasteurización , Pasteurización/métodos , Leche Humana/química , Humanos , Muramidasa/análisis , Escherichia coli/crecimiento & desarrollo , Lactoferrina/análisis , Esterilización/métodos , Streptococcus agalactiae , Microbiología de Alimentos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38899575

RESUMEN

INTRODUCTION: Pasteurized human donor milk (DM) is frequently used for feeding preterm newborns and extrauterine growth-restricted (EUGR) infants. Most human milk banks performed a pasteurization of DM using the standard method of Holder pasteurization (HoP) which consists of heating milk at 62.5°C for 30 min. High hydrostatic pressure (HHP) processing was proposed to be an innovative nonthermal method to pasteurize DM. However, the effect of different modes of DM pasteurization on body growth, intestinal maturation, and microbiota has never been investigated in vivo during the lactation. OBJECTIVES: We aimed to study these effects in postnatally growth-restricted (PNGR) mice pups daily supplemented with HoP-DM or HHP-DM. METHODS: PNGR was induced by increasing the number of pups per litter (15 pups/mother) at postnatal Day 4 (PND4). From PND8 to PND20, mice pups were supplemented with HoP-DM or HHP-DM. At PND21, the intestinal permeability was measured in vivo, the intestinal mucosal histology, gut microbiota, and short-chain fatty acids (SCFAs) level were analyzed. RESULTS: HHP-DM pups displayed a significantly higher body weight gain than HoP-DM pups during lactation. At PND21, these two types of human milk supplementations did not differentially alter intestinal morphology and permeability, the gene-expression level of several mucosal intestinal markers, gut microbiota, and the caecal SCFAs level. CONCLUSION: Our data suggest that HHP could be an attractive alternative to HoP and that HHP-DM may ensure a better body growth of preterm and/or EUGR infants.

3.
Gut ; 70(6): 1078-1087, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33020209

RESUMEN

OBJECTIVE: The enteric nervous system (ENS) plays a key role in controlling the gut-brain axis under normal and pathological conditions, such as type 2 diabetes. The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is considered an innovative approach. Among all the intestinal factors, the understanding of the role of gut microbes in controlling glycaemia is still developed. We studied whether the modulation of gut microbiota by prebiotics could permit the identification of novel enterosynes. DESIGN: We measured the effects of prebiotics on the production of bioactive lipids in the intestine and tested the identified lipid on ENS-induced contraction and glucose metabolism. Then, we studied the signalling pathways involved and compared the results obtained in mice to human. RESULTS: We found that modulating the gut microbiota with prebiotics modifies the actions of enteric neurons, thereby controlling duodenal contraction and subsequently attenuating hyperglycaemia in diabetic mice. We discovered that the signalling pathway involved in these effects depends on the synthesis of a bioactive lipid 12-hydroxyeicosatetraenoic acid (12-HETE) and the presence of mu-opioid receptors (MOR) on enteric neurons. Using pharmacological approaches, we demonstrated the key role of the MOR receptors and proliferator-activated receptor γ for the effects of 12-HETE. These findings are supported by human data showing a decreased expression of the proenkephalin and MOR messanger RNAs in the duodenum of patients with diabetic. CONCLUSIONS: Using a prebiotic approach, we identified enkephalin and 12-HETE as new enterosynes with potential real beneficial and safety impact in diabetic human.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/biosíntesis , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Duodeno/fisiología , Sistema Nervioso Entérico/fisiología , Prebióticos , Receptores Opioides mu/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacología , Adulto , Anciano , Animales , Eje Cerebro-Intestino , Diabetes Mellitus Experimental/fisiopatología , Duodeno/inervación , Encefalinas/genética , Encefalinas/metabolismo , Sistema Nervioso Entérico/efectos de los fármacos , Microbioma Gastrointestinal , Prueba de Tolerancia a la Glucosa , Humanos , Contracción Isotónica/efectos de los fármacos , Masculino , Ratones , Persona de Mediana Edad , Músculo Liso/fisiología , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Oligosacáridos/farmacología , PPAR gamma/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo , Receptores Opioides mu/genética , Transducción de Señal
4.
Int J Obes (Lond) ; 45(5): 1052-1060, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33594258

RESUMEN

OBJECTIVE: Recent evidence indicates that levels of breast milk (BM) hormones such as leptin can fluctuate with maternal adiposity, suggesting that BM hormones may signal maternal metabolic and nutritional environments to offspring during postnatal development. The hormone apelin is highly abundant in BM but its regulation during lactation is completely unknown. Here, we evaluated whether maternal obesity and overnutrition impacted BM apelin and leptin levels in clinical cohorts and lactating rats. METHODS: BM and plasma samples were collected from normal-weight and obese breastfeeding women, and from lactating rats fed a control or a high fat (HF) diet during lactation. Apelin and leptin levels were assayed by ELISA. Mammary gland (MG) apelin expression and its cellular localization in lactating rats was measured by quantitative RT-PCR and immunofluorescence, respectively. RESULTS: BM apelin levels increased with maternal BMI, whereas plasma apelin levels decreased. BM apelin was also positively correlated with maternal insulin and C-peptide levels. In rats, maternal HF feeding exclusively during lactation was sufficient to increase BM apelin levels and decrease its plasma concentration without changing body weight. In contrast, BM leptin levels increased with maternal BMI in humans, but did not change with maternal HF feeding during lactation in rats. Apelin is highly expressed in the rat MG during lactation and was mainly localized to mammary myoepithelial cells. We found that MG apelin gene expression was up-regulated by maternal HF diet and positively correlated with BM apelin content and maternal insulinemia. CONCLUSIONS: Our study indicates that BM apelin levels increase with long- and short-term overnutrition, possibly via maternal hyperinsulinemia and transcriptional upregulation of MG apelin expression in myoepithelial cells. Apelin regulates many physiological processes, including energy metabolism, digestive function, and development. Further studies are needed to unravel the consequences of such changes in offspring development.


Asunto(s)
Apelina/análisis , Leche Humana/química , Obesidad Materna/epidemiología , Obesidad Materna/fisiopatología , Hipernutrición/fisiopatología , Animales , Lactancia Materna , Dieta Alta en Grasa , Femenino , Francia , Humanos , Lactancia , Leptina , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Ratas , Ratas Wistar
5.
Am J Physiol Endocrinol Metab ; 317(6): E1094-E1107, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31638854

RESUMEN

Clinical and animal studies have reported an association between low birth weight and the development of nonalcoholic fatty liver disease (NAFLD) in offspring. Using a model of prenatal maternal 70% food restriction diet (FR30) in the rat, we previously showed that maternal undernutrition predisposes offspring to altered lipid metabolism in adipose tissue, especially on a high-fat (HF) diet. Here, using microarray-based expression profiling combined with metabolic, endocrine, biochemical, histological, and lipidomic approaches, we assessed whether FR30 procedure sensitizes adult male offspring to impaired lipid metabolism in the liver. No obvious differences were noted in the concentrations of triglycerides, cholesterol, and bile acids in the liver of 4-mo-old FR30 rats whichever postweaning diet was used. However, several clues suggest that offspring's lipid metabolism and steatosis are modified by maternal undernutrition. First, lipid composition was changed (i.e., higher total saturated fatty acids and lower elaidic acid) in the liver, whereas larger triglyceride droplets were observed in hepatocytes of undernourished rats. Second, FR30 offspring exhibited long-term impact on hepatic gene expression and lipid metabolism pathways on a chow diet. Although the transcriptome profile was globally modified by maternal undernutrition, cholesterol and bile acid biosynthesis pathways appear to be key targets, indicating that FR30 animals were predisposed to impaired hepatic cholesterol metabolism. Third, the FR30 protocol markedly modifies hepatic gene transcription profiles in undernourished offspring in response to postweaning HF. Overall, FR30 offspring may exhibit impaired metabolic flexibility, which does not enable them to properly cope with postweaning nutritional challenges influencing the development of nonalcoholic fatty liver.


Asunto(s)
Hígado Graso/genética , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Desnutrición , Complicaciones del Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Animales , Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/metabolismo , Hígado Graso/patología , Femenino , Perfilación de la Expresión Génica , Hepatocitos/metabolismo , Hepatocitos/patología , Gotas Lipídicas/patología , Hígado/patología , Masculino , Ácidos Oléicos/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Fenómenos Fisiologicos de la Nutrición Prenatal/genética , Ratas , Triglicéridos/metabolismo
6.
Int J Obes (Lond) ; 43(12): 2381-2393, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30622312

RESUMEN

OBJECTIVE: The lactation-suckling period is critical for white adipose tissue (WAT) development. Early postnatal nutrition influences later obesity risk but underlying mechanisms remain elusive. Here, we tested whether altered postnatal nutrition specifically during suckling impacts epigenetic regulation of key metabolic genes in WAT and alter long-term adiposity set point. METHODS: We analyzed the effects of maternal high-fat (HF) feeding in rats exclusively during lactation-suckling on breast milk composition and its impact on male offspring visceral epidydimal (eWAT) and subcutaneous inguinal (iWAT) depots during suckling and in adulthood. RESULTS: Maternal HF feeding during lactation had no effect on mothers' body weight (BW) or global breast milk composition, but induced qualitative changes in breast milk fatty acid (FA) composition (high n-6/n-3 polyunsaturated FA ratio and low medium-chain FA content). During suckling, HF neonates showed increased BW and mass of both eWAT and iWAT depot but only eWAT displayed an enhanced adipogenic transcriptional signature. In adulthood, HF offspring were predisposed to weight gain and showed increased hyperplastic growth only in eWAT. This specific eWAT expansion was associated with increased expression and activity of stearoyl-CoA desaturase-1 (SCD1), a key enzyme of FA metabolism. SCD1 converts saturated FAs, e.g. palmitate and stearate, to monounsaturated FAs, palmitoleate and oleate, which are the predominant substrates for triglyceride synthesis. Scd1 upregulation in eWAT was associated with reduced DNA methylation in Scd1 promoter surrounding a PPARγ-binding region. Conversely, changes in SCD1 levels and methylation were not observed in iWAT, coherent with a depot-specific programming. CONCLUSIONS: Our data reveal that maternal HF feeding during suckling programs long-term eWAT expansion in part by SCD1 epigenetic reprogramming. This programming events occurred with drastic changes in breast milk FA composition, suggesting that dietary FAs are key metabolic programming factors in the early postnatal period.


Asunto(s)
Tejido Adiposo Blanco , Dieta Alta en Grasa , Epigénesis Genética/genética , Lactancia/genética , Estearoil-CoA Desaturasa , Tejido Adiposo Blanco/química , Tejido Adiposo Blanco/enzimología , Tejido Adiposo Blanco/metabolismo , Animales , Animales Recién Nacidos , Peso Corporal/genética , Femenino , Grasa Intraabdominal/química , Grasa Intraabdominal/enzimología , Grasa Intraabdominal/metabolismo , Masculino , Leche/química , Ratas Wistar , Estearoil-CoA Desaturasa/análisis , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
7.
FASEB J ; 32(5): 2768-2778, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29295860

RESUMEN

According to the Developmental Origin of Health and Disease (DOHaD) concept, maternal obesity and accelerated growth in neonates program obesity later in life. White adipose tissue (WAT) has been the focus of developmental programming events, although underlying mechanisms remain elusive. In rodents, WAT development primarily occurs during lactation. We previously reported that adult rat offspring from dams fed a high-fat (HF) diet exhibited fat accumulation and decreased peroxisome proliferator-activated receptor γ (PPARγ) mRNA levels in WAT. We hypothesized that PPARγ down-regulation occurs via epigenetic malprogramming which takes place during adipogenesis. We therefore examined epigenetic modifications in the PPARγ1 and PPARγ2 promoters in perirenal (pWAT) and inguinal fat pads of HF offspring at weaning (postnatal d 21) and in adulthood. Postnatal d 21 is a period characterized by active epigenomic remodeling in the PPARγ2 promoter (DNA hypermethylation and depletion in active histone modification H3ac and H3K4me3) in pWAT, consistent with increased DNA methyltransferase and DNA methylation activities. Adult HF offspring exhibited sustained hypermethylation and histone modification H3ac of the PPARγ2 promoter in both deposits, correlated with persistent decreased PPARγ2 mRNA levels. Consistent with the DOHaD hypothesis, retained epigenetic marks provide a mechanistic basis for the cellular memory linking maternal obesity to a predisposition for later adiposity.-Lecoutre, S., Pourpe, C., Butruille, L., Marousez, L., Laborie, C., Guinez, C., Lesage, J., Vieau, D., Eeckhoute, J., Gabory, A., Oger, F., Eberlé, D., Breton, C. Reduced PPARγ2 expression in adipose tissue of male rat offspring from obese dams is associated with epigenetic modifications.


Asunto(s)
Tejido Adiposo/metabolismo , Metilación de ADN , Epigénesis Genética , Obesidad/metabolismo , PPAR gamma/biosíntesis , Regiones Promotoras Genéticas , Tejido Adiposo/patología , Adiposidad/genética , Animales , Femenino , Histonas/genética , Histonas/metabolismo , Masculino , Obesidad/genética , PPAR gamma/genética , Procesamiento Proteico-Postraduccional , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Wistar
8.
Proc Natl Acad Sci U S A ; 112(26): E3345-54, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26080404

RESUMEN

Deviation of the ambient temperature is one of the most ubiquitous stimuli that continuously affect mammals' skin. Although the role of the warmth receptors in epidermal homeostasis (EH) was elucidated in recent years, the mystery of the keratinocyte mild-cold sensor remains unsolved. Here we report the cloning and characterization of a new functional epidermal isoform of the transient receptor potential M8 (TRPM8) mild-cold receptor, dubbed epidermal TRPM8 (eTRPM8), which is localized in the keratinocyte endoplasmic reticulum membrane and controls mitochondrial Ca(2+) concentration ([Ca(2+)]m). In turn, [Ca(2+)]m modulates ATP and superoxide (O2(·-)) synthesis in a cold-dependent manner. We report that this fine tuning of ATP and O2(·-) levels by cooling controls the balance between keratinocyte proliferation and differentiation. Finally, to ascertain eTRPM8's role in EH in vivo we developed a new functional knockout mouse strain by deleting the pore domain of TRPM8 and demonstrated that eTRPM8 knockout impairs adaptation of the epidermis to low temperatures.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Frío , Epidermis/metabolismo , Queratinocitos/citología , Isoformas de Proteínas/fisiología , Canales Catiónicos TRPM/fisiología , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Células Cultivadas , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Superóxidos/metabolismo
9.
Am J Physiol Endocrinol Metab ; 304(1): E14-22, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23092912

RESUMEN

Low birth weight is associated with an increased risk for developing type 2 diabetes and metabolic diseases. The placental capacity to supply nutrients and oxygen to the fetus represents the main determiner of fetal growth. However, few studies have investigated the effects of maternal diet on the placenta. We explored placental adaptive proteomic processes implicated in response to maternal undernutrition. Rat term placentas from 70% food-restricted (FR30) mothers were used for a proteomic screen. Placental mitochondrial functions were evaluated using molecular and functional approaches, and ATP production was measured. FR30 drastically reduced placental and fetal weights. FR30 placentas displayed 14 proteins that were differentially expressed, including several mitochondrial proteins. FR30 induced a marked increase in placental mtDNA content and changes in mitochondrial functions, including modulation of the expression of genes implicated in biogenesis and bioenergetic pathways. FR30 mitochondria showed higher oxygen consumption but failed to maintain their ATP production. Maternal undernutrition induces placental mitochondrial abnormalities. Although an increase in biogenesis and bioenergetic efficiency was noted, placental ATP level was reduced. Our data suggest that placental mitochondrial defects may be implicated in fetoplacental pathologies.


Asunto(s)
Restricción Calórica/efectos adversos , Metabolismo Energético/fisiología , Retardo del Crecimiento Fetal/etiología , Fenómenos Fisiologicos Nutricionales Maternos , Mitocondrias/fisiología , Placenta/metabolismo , Animales , Eficiencia/fisiología , Femenino , Retardo del Crecimiento Fetal/metabolismo , Masculino , Intercambio Materno-Fetal/fisiología , Mitocondrias/metabolismo , Placenta/fisiología , Placenta/ultraestructura , Circulación Placentaria/fisiología , Embarazo , Ratas , Ratas Wistar
10.
Nutrients ; 15(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375672

RESUMEN

BACKGROUND: An inadequate perinatal nutritional environment can alter the maturation of the intestinal barrier and promote long-term pathologies such as metabolic syndrome or chronic intestinal diseases. The intestinal microbiota seems to play a determining role in the development of the intestinal barrier. In the present study, we investigated the impact of consuming an early postnatal prebiotic fiber (PF) on growth, intestinal morphology and the microbiota at weaning in postnatal-growth-restricted mice (PNGR). METHODS: Large litters (15 pups/mother) were generated from FVB/NRj mice to induce PNGR at postnatal day 4 (PN4) and compared to control litters (CTRL, 8 pups/mother). PF (a resistant dextrin) or water was orally administered once daily to the pups from PN8 to PN20 (3.5 g/kg/day). Intestinal morphology was evaluated at weaning (PN21) using the ileum and colon. Microbial colonization and short-chain fatty acid (SCFA) production were investigated using fecal and cecal contents. RESULTS: At weaning, the PNGR mice showed decreased body weight and ileal crypt depth compared to the CTRL. The PNGR microbiota was associated with decreased proportions of the Lachnospiraceae and Oscillospiraceae families and the presence of the Akkermansia family and Enterococcus genus compared to the CTRL pups. The propionate concentrations were also increased with PNGR. While PF supplementation did not impact intestinal morphology in the PNGR pups, the proportions of the Bacteroides and Parabacteroides genera were enriched, but the proportion of the Proteobacteria phylum was reduced. In the CTRL pups, the Akkermansia genus (Verrucomicrobiota phylum) was present in the PF-supplemented CTRL pups compared to the water-supplemented ones. CONCLUSIONS: PNGR alters intestinal crypt maturation in the ileum at weaning and gut microbiota colonization. Our data support the notion that PF supplementation might improve gut microbiota establishment during the early postnatal period.


Asunto(s)
Suplementos Dietéticos , Prebióticos , Femenino , Embarazo , Animales , Ratones , Intestinos , Lactancia , Ratones Endogámicos
11.
Viruses ; 15(7)2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37515257

RESUMEN

In preterm infants, sterilized donor milk (DM) is frequently used for feeding when breast milk is lacking. Most human milk banks use the Holder pasteurization method (HoP) to ensure the microbiological safety of DM. However, this method degrades many bioactive factors and hormones. Recently, high hydrostatic pressure (HHP) processing, which preserves bioactive factors in human milk, has been proposed as an alternative method to ensure the safety of DM. Although HHP treatment has been shown to be effective for viral inactivation, the effect of HHP on viruses that may be present in the complex nutritional matrix of human milk has not yet been defined. In the present study, we compared the efficacy of two HHP protocols (4 cycles at 350 MPa at 38 °C designated as 4xHP350 treatment, and 1 cycle at 600 MPa at 20 °C designated as 1xHP600 treatment) with the HoP method on artificially virus-infected DM. For this purpose, we used human coronavirus 229E (HCoV-229E) and hepatitis E virus (HEV) as surrogate models for enveloped and non-enveloped viruses. Our results showed that HCoV-229E is inactivated by HHP and HoP treatment. In particular, the 4xHP350 protocol is highly effective in inactivating HCoV-229E. However, our results demonstrated a matrix effect of human milk on HCoV-229E inactivation. Furthermore, we demonstrated that HEV is stable to moderate pressure HHP treatment, but the milk matrix does not protect it from inactivation by the high-pressure HHP treatment of 600 MPa. Importantly, the complex nutritional matrix of human milk protects HEV from inactivation by HoP treatment. In conclusion, we demonstrated that HHP and HoP treatments do not lead to complete inactivation of both surrogate virus models, indicating that these treatments cannot guarantee total viral safety of donor milk.


Asunto(s)
Coronavirus Humano 229E , Virus de la Hepatitis E , Lactante , Femenino , Humanos , Recién Nacido , Leche Humana , Pasteurización/métodos , Presión Hidrostática , Recien Nacido Prematuro
12.
Nutrients ; 15(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38140362

RESUMEN

The first 1000 days of life is a critical period that contributes significantly to the programming of an individual's future health. Among the many changes that occur during this period early in life, there is growing evidence that the establishment of healthy gut microbiota plays an important role in the prevention of both short- and long-term health problems. Numerous publications suggest that the quality of the gut microbiota colonisation depends on several dietary factors, including breastfeeding. In this respect, a relationship between breastfeeding and the risk of inflammatory bowel disease (IBD) has been suggested. IBDs are chronic intestinal diseases, and perinatal factors may be partly responsible for their onset. We review the existence of links between breastfeeding and IBD based on experimental and clinical studies. Overall, despite encouraging experimental data in rodents, the association between breastfeeding and the development of IBD remains controversial in humans, partly due to the considerable heterogeneity between clinical studies. The duration of exclusive breastfeeding is probably decisive for its lasting effect on IBD. Thus, specific improvements in our knowledge could support dietary interventions targeting the gut microbiome, such as the early use of prebiotics, probiotics or postbiotics, in order to prevent the disease.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Probióticos , Humanos , Femenino , Lactancia Materna , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/prevención & control , Prebióticos
13.
Front Nutr ; 10: 1107054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891163

RESUMEN

The milk metabolome is composed of hundreds of molecules that can impact infant development. In preterm infants, sterilized donor milk (DM) is frequently used for their feeding. We aimed to identify differences in the metabolome of DM after two types of milk sterilization: the Holder pasteurization (HoP) and a high hydrostatic pressure (HP) processing. DM samples were sterilized by HoP (62.5°C for 30 min) or processed by HP (350 MPa at 38°C). 595 milk metabolites were analyzed using an untargeted metabolomic analysis. Both treatments differentially altered several classes of compounds. The major changes noted included decreased levels of free fatty acids, phospholipid metabolites, and sphingomyelins. Decreases were more strongly noted in HP samples rather than in HoP ones. Both HoP and HP treatments increased the levels of ceramides and nucleotide compounds. The sterilization of human milk altered its metabolome especially for lipids.

14.
Front Pediatr ; 11: 1120008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842027

RESUMEN

Sterilized donor milk (DM) is frequently used for feeding preterm infants. To date, the effect of different modes of DM sterilization on short-chain fatty acids (SCFAs) remains unknown. We aimed to quantify SCFAs in DM samples after two types of milk sterilization: the Holder pasteurization (HoP) and a high hydrostatic pressure (HP) processing. Eight pooled DM samples were sterilized by HoP (62.5°C for 30 min) or processed by HP (350 MPa at 38°C). Raw DM was used as control. Six SCFAs were quantified by gas chromatography/mass spectrometry. Compared to raw milk, both HoP and HP treatment did not significantly modulate the concentration of acetate, butyrate, propionate and isovalerate in DM. Valerate and isobutyrate were undetectable in DM samples. In conclusion, both HoP and HP processing preserved milk SCFAs at their initial levels in raw human milk.

15.
Med Sci (Paris) ; 39(11): 869-875, 2023 Nov.
Artículo en Francés | MEDLINE | ID: mdl-38018931

RESUMEN

Human milk oligosaccharides (HMO) represent the third largest component of human breast milk (BM). The BM level is comprised between 5 to 20 g per liter and they have a great structural complexity with more than 150 HMO characterized to date. In this review, we present a summary of the main experimental and clinical data that have demonstrated their multiple biological roles in infants such as for gut development, microbiota, immune protection and neurodevelopment. Some HMO-enriched infant formulas are available yet, even if their benefits on the infant health remain to be confirmed. Further researches could allow therapeutic use in preterm newborns or in infants with intestinal diseases. Experimental data suggest that they could also be used in the prevention of some chronic diseases with immunometabolic or neurodevelopmental components.


Title: Les oligosaccharides du lait maternel : des rôles majeurs pour le développement de l'enfant et sa santé future. Abstract: En raison de sa capacité à fournir des apports nutritionnels optimaux ainsi que de nombreux facteurs bioactifs, tels que des oligosaccharides, le lait maternel est considéré comme le régime alimentaire optimal pour les nouveau-nés. Les oligosaccharides du lait humain (HMO) constituent le troisième composant du lait maternel. Plus de 150 HMO ont été caractérisés, leur concentration variant de 5 à 20 g/L. Certaines préparations infantiles enrichies en HMO sont désormais disponibles, même si leurs effets sur la santé restent à démontrer. La poursuite des recherches pourrait permettre d'envisager leur utilisation chez les enfants prématurés ou présentant des maladies inflammatoires digestives. Des données expérimentales suggèrent en effet que les HMO pourraient prévenir certaines maladies chroniques à composantes immuno-métaboliques ou neurodéveloppementales. Dans cette revue, nous présentons une synthèse des dernières données montrant les effets biologiques de ces oligosaccharides.


Asunto(s)
Enfermedades Intestinales , Microbiota , Lactante , Niño , Femenino , Recién Nacido , Humanos , Leche Humana/química , Desarrollo Infantil , Oligosacáridos
16.
Nutrients ; 15(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37764826

RESUMEN

BACKGROUND: Human milk banks (HMBs) provide sterilized donor milk (DM) for the feeding of preterm infants. Most HMBs use the standard method of Holder pasteurization (HoP) performed by heating DM at 62.5 °C for 30 min. High hydrostatic pressure (HHP) processing has been proposed as an alternative to HoP. This study aims to evaluate intestinal barrier integrity and microbiota composition in adult mice subjected to a chronic oral administration of HoP- or HHP-DM. METHODS: Mice were treated by daily gavages with HoP- or HHP-DM over seven days. Intestinal barrier integrity was assessed through in vivo 4 kDa FITC-dextran permeability assay and mRNA expression of several tight junctions and mucins in ileum and colon. Cecal short chain fatty acids (SCFAs) and microbiota were analyzed. RESULTS: HHP-DM mice displayed decreased intestinal permeability to FITC-dextran and increased ileal mRNA expression levels of two tight junctions (Ocln and Cdh1) and Muc2. In the colon, mRNA expression levels of two tight junctions (Cdh1 and Tjp1) and of two mucins (Muc2 and Muc4) were decreased in HHP-DM mice. Cecal SCFAs and microbiota were not different between groups. CONCLUSIONS: HHP processing of DM reinforces intestinal barrier integrity in vivo without affecting gut microbiota and SCFAs production. This study reinforces previous findings showing that DM sterilization through HHP might be beneficial for the intestinal maturation of preterm infants compared with the use of HoP for the treatment of DM.


Asunto(s)
Pasteurización , Recién Nacido , Adulto , Lactante , Humanos , Animales , Ratones , Leche Humana , Presión Hidrostática , Recien Nacido Prematuro , Esterilización , ARN Mensajero
17.
Ann Cardiol Angeiol (Paris) ; 72(5): 101640, 2023 Nov.
Artículo en Francés | MEDLINE | ID: mdl-37677914

RESUMEN

Recent international guidelines recommend rapid initiation and titration of basic treatments of heart failure but do not explain how to achieve this goal. Despite these recommendations, implementation of treatment in daily practice is poor. This may be partly explained by the profile of the patients (frailty, comorbidities), safety considerations and tolerability issues related to kydney function, low blood pressure or heart rate and hyperkalaemia. In this special article, we intended to help the physician, through an algorithmic approach, to quickly and safely introduce guideline-directed medical therapy in the field of heart failure with ejection fraction under 50%.

18.
Nutrients ; 14(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011094

RESUMEN

BACKGROUND: High hydrostatic pressure (HHP) processing is a non-thermal method proposed as an alternative to Holder pasteurization (HoP) for the sterilization of human breast milk (BM). HHP preserves numerous milk bioactive factors that are degraded by HoP, but no data are available for milk apelin and glucagon-like peptide 1 (GLP-1), two hormones implicated in the control of glucose metabolism directly and via the gut-brain axis. This study aims to determine the effects of HoP and HHP processing on apelin and GLP-1 concentrations in BM and to test the effect of oral treatments with HoP- and HHP-BM on intestinal contractions and glucose metabolism in adult mice. METHODS: Mice were treated by daily oral gavages with HoP- or HHP-BM during one week before intestinal contractions, and glucose tolerance was assessed. mRNA expression of enteric neuronal enzymes known to control intestinal contraction was measured. RESULTS: HoP-BM displayed a reduced concentration of apelin and GLP-1, whereas HHP processing preserved these hormones close to their initial levels in raw milk. Chronic HHP-BM administration to mice increased ileal mRNA nNos expression level leading to a decrease in gut contraction associated with improved glucose tolerance. CONCLUSION: In comparison to HoP, HPP processing of BM preserves both apelin and GLP-1 and improves glucose tolerance by acting on gut contractions. This study reinforces previous findings demonstrating that HHP processing provides BM with a higher biological value than BM treated by HoP.


Asunto(s)
Apelina/análisis , Péptido 1 Similar al Glucagón/análisis , Glucosa/metabolismo , Presión Hidrostática , Leche Humana/química , Animales , Eje Cerebro-Intestino/fisiología , Humanos , Ileus/metabolismo , Ratones , Pasteurización
19.
Nutrients ; 14(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35631317

RESUMEN

(1) Background: Type 2 diabetes (T2D) is associated with a duodenal hypermotility in postprandial conditions that favors hyperglycemia and insulin resistance via the gut-brain axis. Enterosynes, molecules produced within the gut with effects on the enteric nervous system, have been recently discovered and pointed to as potential key modulators of the glycemia. Indeed, targeting the enteric nervous system that controls gut motility is now considered as an innovative therapeutic way in T2D to limit intestinal glucose absorption and restore the gut-brain axis to improve insulin sensitivity. So far, little is known about the role of glucose on duodenal contraction in fasted and fed states in normal and diabetic conditions. The aim of the present study was thus to investigate these effects in adult mice. (2) Methods: Gene-expression level of glucose transporters (SGLT-1 and GLUT2) were quantified in the duodenum and jejunum of normal and diabetic mice fed with an HFD. The effect of glucose at different concentrations on duodenal and jejunal motility was studied ex vivo using an isotonic sensor in fasted and fed conditions in both normal chow and HFD mice. (3) Results: Both SGLT1 and GLUT2 expressions were increased in the duodenum (47 and 300%, respectively) and jejunum (75% for GLUT2) of T2D mice. We observed that glucose stimulates intestinal motility in fasted (200%) and fed (400%) control mice via GLUT2 by decreasing enteric nitric oxide release (by 600%), a neurotransmitter that inhibits gut contractions. This effect was not observed in diabetic mice, suggesting that glucose sensing and mechanosensing are altered during T2D. (4) Conclusions: Glucose acts as an enterosyne to control intestinal motility and glucose absorption through the enteric nervous system. Our data demonstrate that GLUT2 and a reduction of NO production could both be involved in this stimulatory contracting effect.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Glucemia/metabolismo , Glucosa/metabolismo , Ratones , Óxido Nítrico/metabolismo
20.
Antioxidants (Basel) ; 11(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35739988

RESUMEN

Preterm infants are highly susceptible to oxidative stress due to an imbalance between endogenous oxidant and antioxidant systems. In addition, these newborns are frequently fed with donor milk (DM) treated by Holder pasteurization (HoP) at 62.5 °C for 30 min, which is known to alter numerous heat-sensitive factors, including some antioxidants. High hydrostatic pressure (HHP) processing was recently proposed as an innovative method for the treatment of DM. The present study aimed to measure the redox balance of HoP- and HHP-DM and to study, in vivo, the effects of HoP- and HHP-DM on the gut and liver. H2O2, vitamin A and vitamin E (α- and γ-tocopherols) concentrations, as well as the total antioxidant capacity (TAC), were measured in raw-, HoP- and HHP-DM. The gene expression level of antioxidant systems and inflammatory response were quantified in the ileum and liver of adult mice after 7 days of oral administration of HoP- or HHP-DM. HoP reduced the γ-tocopherol level, whereas HHP treatment preserved all vitamins close to the raw milk level. The milk H2O2 content was reduced by HHP but not by HoP. The total antioxidant capacity of DM was reduced after HHP processing measured by PAOT-Liquid® technology but was unaffected after measurement by ORAC assay. In mice, HHP-DM administration induced a stimulation of antioxidant defenses and reduced some inflammatory markers in both the ileum and liver compared to HoP-DM treatment. Our preliminary study suggests that the HHP processing of DM may better protect preterm infants from gut and liver pathologies compared to HoP, which is currently used in most human milk banks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA