Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Chemphyschem ; 25(11): e202400089, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38502679

RESUMEN

The chirped-pulse Fourier Transform microwave spectrum of 2-tert-butylphenol, an industrial intermediate for the production of antioxidants, has been investigated in the 2-8 GHz frequency range. The spectral analysis has allowed obtaining precise structural information on the most stable conformer and its complex with argon. The conformation of the monomer reveals that the hydroxyl group is coplanar with the ring but points in the opposite direction to the tert-butyl group, reducing steric interactions. In the tert-butyl group one methyl group is coplanar and the other two are symmetrically staggered respect to the ring. The complex shows the rare gas sitting above the aromatic ring. Interestingly, neither the monomer nor the complex exhibit large-amplitude hydroxyl torsion motions, previously observed in 2,6-disubstituted phenols such as 2,6-di-tert-butylphenol or propofol. The experimental results are supported by computational calculations, validating the molecular structure. Additionally, symmetry-adapted perturbation theory has allowed determining the van der Waals intermolecular interaction energy of the complex.

2.
Chemphyschem ; 25(5): e202300799, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38282167

RESUMEN

We present a rotational-computational investigation of the aromatic mercaptan 2-phenylethanethiol, addressing its potential energy surface, conformational equilibrium, internal dynamics and intramolecular interactions. The experiment used broadband chirped-pulse Fourier transform microwave spectroscopy in a supersonic jet expansion, recording the rotational spectrum in the 2-8 GHz frequency region. Two different conformers were detected in the spectrum. The most intense transitions correspond to a skew (gauche-gauche) conformation, identified as the global minimum. The spectra of ten different isotopologues were assigned for this species, leading to accurate effective and substitution structures. The weaker spectrum presents small tunnelling doublings caused by the torsional motion of the thiol group, which are only compatible with an antiperiplanar skeleton and a gauche thiol. The larger stability of the global minimum is attributed to an intramolecular S-H⋅⋅⋅π weak hydrogen bond. A comparison of the intramolecular interactions in the title molecule and 2-phenylethanol, similarly stabilized by a O-H⋅⋅⋅π hydrogen bond, shows the different strength of these interactions. Density functional (B3LYP-D3, B2PLYP-D3) and ab initio (MP2) calculations were conducted for the molecule.

3.
Angew Chem Int Ed Engl ; 63(29): e202404447, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38717939

RESUMEN

Structural changes induced by water play a pivotal role in chemistry and biology but remain challenging to predict, measure, and control at molecular level. Here we explore size-governed gas-phase water aggregation in the flexible molecule 4-hydroxy-2-butanone, modeling the conformational adaptability of flexible substrates to host water scaffolds and the preference for sequential droplet growth. The experiment was conducted using broadband rotational spectroscopy, rationalized with quantum chemical calculations. Two different isomers were observed experimentally from the di- to the pentahydrates (4-hydroxy-2-butanone-(H2O)n=2-5), including the 18O isotopologues for the di- and trihydrates. Interestingly, to accommodate water molecules effectively, the heavy atom skeleton of 4-hydroxy-2-butanone reshapes in every observed isomer and does not correspond to the stable conformer of the free monomer. All solvates initiate from the alcohol group (proton donor) but retain the carbonyl group as secondary binding point. The water scaffolds closely resemble those found in the pure water clusters, balancing between the capability of 4-hydroxy-2-butanone for steering the orientation and position of the water molecules and the ability of water to modulate the monomer's conformation. The present work thus provides an accurate molecular description on how torsionally flexible molecules dynamically adapt to water along progressing solvation.

4.
Phys Chem Chem Phys ; 25(17): 12174-12181, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37070760

RESUMEN

Non-covalent interactions between sulfur centers and aromatic rings play important roles in biological chemistry. We examined here the sulfur-arene interactions between the fused aromatic heterocycle benzofuran and two prototype sulfur divalent triatomics (sulfur dioxide and hydrogen sulfide). The weakly-bound adducts were generated in a supersonic jet expansion and characterized with broadband (chirped-pulsed) time-domain microwave spectroscopy. The rotational spectrum confirmed the detection of a single isomer for both heterodimers, consistent with the computational predictions for the global minima. The benzofuran⋯sulfur dioxide dimer exhibits a stacked structure with sulfur closer to benzofuran, while in benzofuran⋯hydrogen sulfide the two S-H bonds are oriented towards the bicycle. These binding topologies are similar to the corresponding benzene adducts, but offer increased interaction energies. The stabilizing interactions are described as S⋯π or S-H⋯π, respectively, using a combination of density-functional theory calculations (dispersion corrected B3LYP and B2PLYP), natural bond orbital theory, energy decomposition and electronic density analysis methods. The two heterodimers present a larger dispersion component, but nearly balanced by electrostatic contributions.

5.
J Chem Phys ; 158(12): 124304, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37003758

RESUMEN

The non-covalent bonding features of carbonyl-carbonyl interactions have been investigated in the dimer of formaldehyde and trifluoroacetone using high resolution rotational spectroscopy combined with quantum chemical calculations. The observation of all possible isotopic substitutions for the heavy atoms in the complex enabled the determination of the accurate structure, characterized by the antiparallel arrangement of the two C=O bonds. The two moieties are connected through a dominant n → π* interaction enhanced by one weak C-H⋯O hydrogen bond, as revealed by supporting natural bond orbital analysis and symmetry-adapted perturbation theory analysis. Further computational investigations on 17 related adducts stabilized by carbonyl-carbonyl n → π* interactions show how the interaction strength is regulated by the incorporation of either electron-donating or withdrawing functional groups.

6.
J Chem Phys ; 159(2)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37428062

RESUMEN

The equilibrium structure of selenophenol has been investigated using rotational spectroscopy and high-level quantum mechanical calculations, offering electronic and structural insight into the scarcely studied selenium compounds. The jet-cooled broadband microwave spectrum was measured in the 2-8 GHz cm-wave region using broadband (chirped-pulse) fast-passage techniques. Additional measurements up to 18 GHz used narrow-band impulse excitation. Spectral signatures were obtained for six isotopic species of selenium (80Se, 78Se, 76Se, 82Se, 77Se, and 74Se), together with different monosubstituted 13C species. The (unsplit) rotational transitions associated with the non-inverting µa-dipole selection rules could be partially reproduced with a semirigid rotor model. However, the internal rotation barrier of the selenol group splits the vibrational ground state into two subtorsional levels, doubling the dipole-inverting µb transitions. The simulation of the double-minimum internal rotation gives a very low barrier height (B3PW91: 42 cm-1), much smaller than for thiophenol (277 cm-1). A monodimensional Hamiltonian then predicts a huge vibrational separation of 72.2 GHz, justifying the non-observation of µb transitions in our frequency range. The experimental rotational parameters were compared with different MP2 and density functional theory calculations. The equilibrium structure was determined using several high-level ab initio calculations. A final Born-Oppenheimer (reBO) structure was obtained at the coupled-cluster CCSD(T)_ae/cc-wCVTZ level of theory, including small corrections for the wCVTZ → wCVQZ basis set enlargement calculated at the MP2 level. The mass-dependent method with predicates was used to produce an alternative rm(2) structure. The comparison between the two methods confirms the high accuracy of the reBO structure and offers information on other chalcogen-containing molecules.

7.
Molecules ; 28(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38138596

RESUMEN

The molecular structure of a van der Waals-bonded complex involving 2,6-di-tert-butylphenol and a single argon atom has been determined through rotational spectroscopy. The experimentally derived structural parameters were compared to the outcomes of quantum chemical calculations that can accurately account for dispersive interactions in the cluster. The findings revealed a π-bound configuration for the complex, with the argon atom engaging the aromatic ring. The microwave spectrum reveals both fine and hyperfine tunneling components. The main spectral doubling is evident as two distinct clusters of lines, with an approximate separation of 179 MHz, attributed to the torsional motion associated with the hydroxyl group. Additionally, each component of this doublet further splits into three components, each with separations measuring less than 1 MHz. Investigation into intramolecular dynamics using a one-dimensional flexible model suggests that the main tunneling phenomenon originates from equivalent positions of the hydroxyl group. A double-minimum potential function with a barrier of 1000 (100) cm-1 effectively describes this extensive amplitude motion. However, the three-fold fine structure, potentially linked to internal motions within the tert-butyl group, requires additional scrutiny for a comprehensive understanding.

8.
Chemphyschem ; 23(24): e202200330, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-35984348

RESUMEN

Herein, we have investigated the structure of phenyl formate⋅⋅⋅water (PhOF⋅⋅⋅H2 O) dimer and various non-covalent interactions present there using gas-phase laser spectroscopy and microwave spectroscopy combined with quantum chemistry calculations. Two conformers of PhOF⋅⋅⋅H2 O (C1 and T1), built on the two cis/trans conformers of the bare molecule, have been observed in the experiment. In cis-PhOF, there is an nCO → π A r * ${{{\rm \pi }}_{{\rm A}{\rm r}}^{{\rm {^\ast}}}}$ interaction between the lone-pair orbital of the carbonyl oxygen atom and the π* orbital of the phenyl ring, which persists in the monohydrated C1 conformer of PhOF⋅⋅⋅H2 O according to the NBO and NCI analyses. On the other hand, this interaction is absent in the trans-PhOF conformer as the C=O group is away from the phenyl ring. The C1 conformer is primarily stabilized by an interplay between O-H⋅⋅⋅O=C hydrogen bond and O-H⋅⋅⋅π interactions, while the stability of the T1 conformer is primarily governed by the O-H⋅⋅⋅O=C hydrogen bond. The most important finding of the present work is that the conformational preference of the PhOF monomer is retained in its monohydrated complex.


Asunto(s)
Formiatos , Microondas , Análisis Espectral , Enlace de Hidrógeno , Rayos Láser
9.
Phys Chem Chem Phys ; 24(15): 8999-9006, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35380144

RESUMEN

Furfuryl alcohol and thenyl alcohol contain a labile torsional chiral center, producing transiently chiral enantiomers interconverting in the nanosecond time-scale. We explored chiral molecular recognition using the weakly-bound intermolecular dimers of both alcohols, freezing stereomutation. Supersonic jet broadband microwave spectroscopy revealed homo and heterochiral diastereoisomers for each alcohol dimer and the structural characteristics of the clusters. All dimers are primarily stabilized by a moderately intense O-H⋯O hydrogen bond, but differ in the secondary interactions, which introduce additional hydrogen bonds either to the ring oxygen in furfuryl alcohol or to the π ring system in thenyl alcohol. Density-functional calculations (B2PLYP-D3(BJ)/def2-TZVP) show no clear preferences for a particular stereochemistry in the dimers, with relative energies of the order 1-2 kJ mol-1. The study suggests opportunities for the investigation of chiral recognition in molecules with torsional barriers in between transient and permanent interconversion regimes.


Asunto(s)
Furanos , Polímeros , Furanos/química , Enlace de Hidrógeno , Estereoisomerismo
10.
Phys Chem Chem Phys ; 24(40): 24800-24809, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36214363

RESUMEN

Gas-phase spectroscopic studies of alcohol clusters offer accurate information on the influence of non-covalent interactions on molecular recognition, and are of paramount importance to model supramolecular and biological chemical processes. Here, we examine the role of the aliphatic side chain in the self-aggregation of aromatic alcohols, using a multi-methodological gas-phase approach which combines microwave spectroscopy and mass-resolved electronic and vibrational laser spectroscopy. Spectroscopic and electronic structure computations were carried out for the dimer, trimer and tetramer of 2-phenylethanol, extending previous investigations on smaller aromatic alcohols. While the conformational flexibility of the ethyl group anticipates a variety of torsional isomers, the intra- and inter-molecular interactions restrict molecular conformations and favour particularly stable isomers. The conformational landscape of the clusters is very shallow and multiple competing isomers were rotationally and/or vibrationally detected, including three dimer species, two trimers and two tetramers. Cluster growth is associated with a tendency to form cyclic hydrogen bond structures.


Asunto(s)
Alcohol Feniletílico , Alcohol Feniletílico/química , Enlace de Hidrógeno , Conformación Molecular , Análisis Espectral
11.
Molecules ; 27(8)2022 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35458782

RESUMEN

Weakly-bound intermolecular clusters constitute reductionist physical models for non-covalent interactions. Here we report the observation of the monomer, the dimer and the monohydrate of 2-adamantanol, a secondary alcohol with a bulky ten-carbon aliphatic skeleton. The molecular species were generated in a supersonic jet expansion and characterized using broadband chirped-pulse microwave spectroscopy in the 2-8 GHz frequency region. Two different gauche-gauche O-H···O hydrogen-bonded isomers were observed for the dimer of 2-adamantanol, while a single isomer was observed for the monomer and the monohydrate. The experimental rotational parameters were compared with molecular orbital calculations using density functional theory (B3LYP-D3(BJ), B2PLYP-D3(BJ), CAM-B3LYP-D3(BJ), ωB97XD), additionally providing energetic and electron density characterization. The shallow potential energy surface makes the dimer an interesting case study to benchmark dispersion-corrected computational methods and conformational search procedures.


Asunto(s)
Adamantano , Adamantano/análogos & derivados , Alcoholes , Enlace de Hidrógeno , Conformación Molecular , Polímeros
12.
Chembiochem ; 22(2): 408-415, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32815664

RESUMEN

Epigenetic marks are modest chemical modifications on DNA and histone proteins that regulate the activation or silencing of genes through modulation of the intermolecular interactions between the DNA strands and the protein machinery. The process is complex and not always well understood. One of the systems studied in greater detail is the epigenetic mark on H3K9: lysine 9 of histone 3. The degree of methylation or acetylation of this histone is linked to silencing or activation of the corresponding gene, but it is not clear which effect each mark has in gene expression. We shed light on this particular methylation process by using density functional theory (DFT) calculations. First, we built a model consisting of a DNA double strand containing three base pairs and a sequence of three amino acids of the histone's tail. Then, we computed the modulation introduced into the intermolecular interactions by each epigenetic modification: from mono- to trimethylation and acetylation. The calculations show that whereas acetylation and trimethylation result in a reduction of the DNA-peptide interaction; non-, mono-, and dimethylation increase the intermolecular interactions. Such observations compare well with the findings reported in the literature, and highlight the correlation between the balance of intermolecular forces and biological properties, simultaneously advancing quantum-mechanical studies of large biochemical systems at molecular level through the use of DFT methods.


Asunto(s)
ADN/química , Teoría Funcional de la Densidad , Histonas/química , Proteínas/química , ADN/genética , Epigénesis Genética/genética , Histonas/genética , Modelos Moleculares , Proteínas/genética
13.
J Org Chem ; 86(2): 1861-1867, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33405924

RESUMEN

We characterized the bis-quinolizidine tetracyclic alkaloid (5S, 6S, 7R, 11R)-matrine in a supersonic jet expansion, using chirped-pulsed broadband microwave spectroscopy. Previous crystal diffraction analyses suggested 16 diastereoisomers associated with matrine's four carbon stereocenters but were inconclusive whether the lactamic nitrogen atom would additionally produce separated trans-/cis- diastereoisomers or if both species may interconvert through low potential barriers. Our experiment simultaneously detected trans- and cis-matrine through their rotational spectrum, confirming the possibility of conformational rearrangement in matrine alkaloids. The two matrine conformers mainly differ in the envelope or half-chair lactamic ring, as evidenced by the experimental rotational and nuclear quadrupole coupling parameters. Molecular orbital calculations with ab initio (MP2) and density functional methods (B3LYP-D3(BJ) and MN15) were tested against the experiment, additionally offering an estimation of the cis-/trans- barrier of 24.9-26.9 kJ mol-1. The experiment illustrates the structural potential of chirped-pulsed broadband microwave spectroscopy for high-resolution rotational studies of biomolecules in the range of 20-40 atoms.

14.
Phys Chem Chem Phys ; 23(18): 10799-10806, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33928998

RESUMEN

The conformational landscape of the cyclohexanolSO2 cluster was revealed in the gas phase using chirped-pulsed broadband rotational spectroscopy and quantum chemical calculations. Four isomers stabilized by a dominant SO chalcogen bond and cooperative C-HO[double bond, length as m-dash]S and O-HO[double bond, length as m-dash]S secondary weak hydrogen bonds were observed, with a near-parallel orientation of the S[double bond, length as m-dash]O and O-H bonds. Isomers formed by equatorial-gauche cyclohexanol are more stable than the isomers containing axial cyclohexanol. The multiple conformations of cyclohexanol and the versatile binding properties of SO2, simultaneously operating as nucleophile and electrophile through its π-holes and non-bonding electrons lead to a complex conformational behavior when the cluster is formed. The long (2.64-2.85 Å) attractive SO interaction between SO2 and cyclohexanol is mainly electrostatic and the contribution of charge transfer is obvious, with an NBO analysis suggesting that the strength of the SO interaction is nearly two orders of magnitude larger than the hydrogen bonds. This study provides molecular insights into the structural and energetic characteristics that determine the formation of pre-nucleation clusters between SO2 and a volatile organic compound like cyclohexanol.

15.
Phys Chem Chem Phys ; 23(41): 23610-23624, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34661223

RESUMEN

Molecular aggregation is of paramount importance in many chemical processes, including those in living beings. Thus, characterization of the intermolecular interactions is an important step in its understanding. We describe here the aggregation of benzyl alcohol at the molecular level, a process governed by a delicate equilibrium between OH⋯O and OH⋯π hydrogen bonds and dispersive interactions. Using microwave, FTIR, Raman and mass-resolved double-resonance IR/UV spectroscopic techniques, we explored the cluster growth up to the tetramer and found a complex landscape, partly due to the appearance of multiple stereoisomers of very similar stability. Interestingly, a consistently homochiral synchronization of transiently chiral monomer conformers was observed during cluster growth to converge in the tetramer, where the fully homochiral species dominates the potential energy surface. The data on the aggregation of benzyl alcohol also constitute an excellent playground to fine-tune the parameters of the most advanced functionals.

16.
J Chem Phys ; 154(19): 194302, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34240896

RESUMEN

Plausible methods for accurate determination of equilibrium structures of intermolecular clusters have been assessed for the van der Waals dimer N2O⋯CO. In order to assure a large initial dataset of rotational parameters, we first measured the microwave spectra of the 15N2O⋯12CO and 15N2O⋯13CO isotopologs, expanding previous measurements. Then, an anharmonic force field was calculated ab initio and a semi-experimental equilibrium structure was determined. The dimer structure was also calculated at the coupled-cluster level of theory using very large basis sets with diffuse functions and counterpoise correction. It was found that the contributions of the diffuse functions and the counterpoise correction are not additive and do not compensate each other although they have almost the same value but opposite signs. The semi-experimental and ab initio structures were found to be in fair agreement, with the equilibrium distance between the centers of mass of both monomers being 3.825(13) Å and the intermolecular bond length r(C⋯O) = 3.300(9) Å. In this case, the mass-dependent method did not permit us to determine reliable intermolecular parameters. The combination of experimental rotational constants and results of ab initio calculations thus proves to be very sensitive to examine the accuracy of structural determinations in intermolecular clusters, offering insight into other aggregates.

17.
Phys Chem Chem Phys ; 22(22): 12412-12421, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32453307

RESUMEN

The monohydrates of thenyl alcohol and thenyl mercaptan have been probed in a supersonic jet expansion using chirped-pulse and Fabry-Perot Fourier-transform microwave spectroscopy. The rotational spectra revealed a single isomer for each of the dimers. The thenyl alcohol hydrate is stabilized by an O-HOw hydrogen bond between the alcohol and water, with water acting as a proton acceptor and additionally engaging in an Ow-Hπ interaction with the thenyl ring. Conversely, water behaves as a proton donor in the thenyl mercaptan hydrate, linking to the thiol group though an Ow-HS hydrogen bond and secondary Ow-Hπ interactions with the ring. In both dimers water retains internal mobility, as tunneling doublings in the spectrum confirm an internal rotation motion of water inside the cluster. The experimental results have been complemented with density-functional-theory molecular orbital calculations, binding energy decomposition and a topological analysis of the electronic density, providing a comparative description of the effects of hydrogen bonding of water to the alcohol and thiol groups in the dimers, relevant to understand hydrogen bonding to sulfur centers.

18.
Angew Chem Int Ed Engl ; 59(33): 14081-14085, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32396706

RESUMEN

The cyclohexanol homodimer acts as a delicate test model of the role of dispersion forces in intermolecular association. Whereas phenol produces a single dimer, the suppression of π interactions and the larger conformational flexibility in cyclohexanol results in multiple isomerism, with six competing dimers of the free molecule being observed in a supersonic jet expansion. Rotational spectroscopy reveals accurate structural data, specifically the formation of homo- and heterochiral diastereoisomers and the presence of both equatorial and axial forms in the dimers. Four dispersion-corrected density-functional molecular orbital calculations were tested against the experiment, with B3LYP-D3(BJ) offering good structural reproducibility with an Alrich's triple-ζ basis set. However, the prediction of the dimer energetics is largely model-dependent, thus offering a testbed for the validation of dispersion-corrected computational models.

19.
Chemistry ; 25(49): 11402-11411, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31002406

RESUMEN

In the last decade, experiment and theory have expanded our vision of non-covalent interactions (NCIs), shifting the focus from the conventional hydrogen bond to new bridging interactions involving a variety of weak donor/acceptor partners. Whereas most experimental data originate from condensed phases, the introduction of broadband (chirped-pulse) microwave fast-passage techniques has revolutionized the field of rotational spectroscopy, offering unexplored avenues for high-resolution studies in the gas phase. We present an outlook of hot topics for rotational investigations on isolated intermolecular clusters generated in supersonic jet expansions. Rotational spectra offer very detailed structural data, easily discriminating the isomeric or isotopic composition and effectively cancelling any solvent, crystal, or matrix bias. The direct comparison with quantum mechanical predictions provides insight into the origin of the inter- and intramolecular interactions with much greater precision than any other spectroscopic technique, simultaneously serving as test-bed for fine-tuning of theoretical methods. We present recent examples of rotational investigations around three topics: oligomer formation, chiral recognition, and identification of halogen, chalcogen, pnicogen, or tetrel bonds. The selected examples illustrate the benefits of rotational spectroscopy for the structural and energetic assessment of inter-/intramolecular interactions, which may help to move from fundamental research to applications in supramolecular chemistry and crystal engineering.

20.
Chemphyschem ; 20(3): 366-373, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30476349

RESUMEN

The disulfide bridge (-S-S-) is an important structural motif in organic and protein chemistry, but only a few accurate equilibrium structures are documented. We report the results of supersonic-jet microwave spectroscopy experiments on the rotational spectra of diphenyl disulfide, C6 H5 -S-S-C6 H5 (including all 13 C and 34 S monosubstituted isotopologues), and the determination of the equilibrium structure by the mixed estimation (ME) method. A single conformation of C2 symmetry was observed in the gas phase. This disulfide is a challenging target since its structure is determined by 34 independent parameters. Additionally, ab initio calculations revealed the presence of three low-frequency vibrations (<50 cm-1 ) associated to phenyl torsions which would prevent the calculation of an accurate force field. For this reason, instead of the semiexperimental method, we used the mass-dependent (rm ) method to fit the structural parameters concurrently to moments of inertia and predicate parameters, affected with appropriate uncertainties. The predicates were obtained by high-level quantum-chemical computations. A careful analysis of the results of different fits and a comparison with the ab initio optimizations confirms the validity of the used methods, providing detailed structural information on the title compound and the disulfide bridge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA