Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biol Blood Marrow Transplant ; 26(5): 920-927, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31790828

RESUMEN

Sinusoidal obstruction syndrome (SOS) is a well-recognized and potentially life-threatening complication of hematopoietic stem cell transplantation (HSCT). SOS arises from endothelial cell damage and hepatocellular injury mostly due to the transplantation conditioning regimens but also to other patient, disease, and treatment-related factors. Understanding risk factors associated with the development of SOS is critical for early initiation of treatment or prophylaxis. The knowledge about genetic contribution is limited; few studies investigated so far selected a set of genes. To get more comprehensive insight in the genetic component, we performed an exome-wide association study using genetic variants derived from whole-exome sequencing. The analyses were performed in a discovery cohort composed of 87 pediatric patients undergoing HSCT following a busulfan-containing conditioning regimen. Eight lead single-nucleotide polymorphisms (SNPs) were identified after correction for multiple testing and subsequently analyzed in a validation cohort (n = 182). Three SNPs were successfully replicated, including rs17146905 (P = .001), rs16931326 (P = .04), and rs2289971 (P = .03), located respectively in the UGT2B10, BHLHE22, and KIAA1715 genes. UGT2B10 and KIAA1715 were retained in a multivariable model while controlling for nongenetic covariates and previously identified risk variants in the GSTA1 promoter. The modulation of associations by conditioning regimens was noted; KIAA1715 was dependent on the intensity of the conditioning regimen, whereas the effect of UGT2B10 was equally applicable to all of them. Combined effect of associated loci was also observed (P = .00006) with a genotype-related SOS risk of 9.8. To our knowledge, this is the first study addressing the genetic component of SOS at an exome-wide level and identifying novel genetic variations conferring a higher risk of SOS, which might be useful for personalized prevention and treatment strategies.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Enfermedad Veno-Oclusiva Hepática , Busulfano/efectos adversos , Niño , Predisposición Genética a la Enfermedad , Glucuronosiltransferasa , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Enfermedad Veno-Oclusiva Hepática/genética , Humanos , Acondicionamiento Pretrasplante/efectos adversos
2.
J Appl Toxicol ; 32(3): 233-43, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22223356

RESUMEN

Aluminium salts used as antiperspirants have been incriminated as contributing to breast cancer incidence in Western societies. To date, very little or no epidemiological or experimental data confirm or infirm this hypothesis. We report here that in MCF-10A human mammary epithelial cells, a well-established normal human mammary epithelial cell model, long-term exposure to aluminium chloride (AlCl(3) ) concentrations of 10-300 µ m, i.e. up to 100 000-fold lower than those found in antiperspirants, and in the range of those recently measured in the human breast, results in loss of contact inhibition and anchorage-independent growth. These effects were preceded by an increase of DNA synthesis, DNA double strand breaks (DSBs), and senescence in proliferating cultures. AlCl(3) also induced DSBs and senescence in proliferating primary human mammary epithelial cells. In contrast, it had no similar effects on human keratinocytes or fibroblasts, and was not detectably mutagenic in bacteria. MCF-10A cells morphologically transformed by long-term exposure to AlCl(3) display strong upregulation of the p53/p21(Waf1) pathway, a key mediator of growth arrest and senescence. These results suggest that aluminium is not generically mutagenic, but similar to an activated oncogene, it induces proliferation stress, DSBs and senescence in normal mammary epithelial cells; and that long-term exposure to AlCl(3) generates and selects for cells able to bypass p53/p21(Waf1) -mediated cellular senescence. Our observations do not formally identify aluminium as a breast carcinogen, but challenge the safety ascribed to its widespread use in underarm cosmetics.


Asunto(s)
Compuestos de Aluminio/toxicidad , Antitranspirantes/toxicidad , Mama/efectos de los fármacos , Cloruros/toxicidad , Cloruro de Aluminio , Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica , Roturas del ADN de Doble Cadena , Reparación del ADN , Células Epiteliales/efectos de los fármacos , Femenino , Humanos
3.
J Biol Chem ; 285(17): 13092-106, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20177072

RESUMEN

Carriers of mutations in the cell cycle checkpoint protein kinase ataxia telangiectasia mutated (ATM), which represent 1-2% of the general population, have an increased risk of breast cancer. However, experimental evidence that ATM deficiency contributes to human breast carcinogenesis is lacking. We report here that in MCF-10A and MCF-12A cells, which are well established normal human mammary gland epithelial cell models, partial or almost complete stable ATM silencing or pharmacological inhibition resulted in cellular transformation, genomic instability, and formation of dysplastic lesions in NOD/SCID mice. These effects did not require the activity of exogenous DNA-damaging agents and were preceded by an unsuspected and striking increase in cell proliferation also observed in primary human mammary gland epithelial cells. Increased proliferation correlated with a dramatic, transient, and proteasome-dependent reduction of p21(WAF1/CIP1) and p27(KIP1) protein levels, whereas little or no effect was observed on p21(WAF1/CIP1) or p27(KIP1) mRNAs. p21(WAF1/CIP1) silencing also increased MCF-10A cell proliferation, thus identifying p21(WAF1/CIP1) down-regulation as a mediator of the proliferative effect of ATM inhibition. Our findings provide the first experimental evidence that ATM is a human breast tumor suppressor. In addition, they mirror the sensitivity of ATM tumor suppressor function and unveil a new mechanism by which ATM might prevent human breast tumorigenesis, namely a direct inhibitory effect on the basal proliferation of normal mammary epithelial cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/metabolismo , Silenciador del Gen , Glándulas Mamarias Humanas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/prevención & control , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Proteínas de Unión al ADN/genética , Regulación hacia Abajo/genética , Células Epiteliales/patología , Femenino , Inestabilidad Genómica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glándulas Mamarias Humanas/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética
4.
Sci Rep ; 11(1): 5038, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658540

RESUMEN

GSTA1 encodes a member of a family of enzymes that function to add glutathione to target electrophilic compounds, including carcinogens, therapeutic drugs, environmental toxins, and products of oxidative stress. GSTA1 has several functional SNPs within its promoter region that are responsible for a change in its expression by altering promoter function. This study aims to investigate distributions of GSTA1 promoter haplotypes across different human populations and to assess their impact on the expression of GSTA1. PHASE 2.1.1 was used to infer haplotypes and diplotypes of six GSTA1 promoter SNPs on 2501 individuals from 26 populations classified by the 1000 Genomes Project into five super-populations that included Africa (N = 660), America (N = 347), East Asia (N = 504), Europe (N = 502), and South Asia (N = 488). We used pairwise FST analysis to compare sub-populations and luciferase reporter assay (LRA) to evaluate the impact of each SNP on activation of transcription and interaction with other SNPs. The distributions of GSTA1 promoter haplotypes and diplotypes were significantly different among the different human populations. Three new promoter haplotypes were found in the African super-population. LRA demonstrated that SNPs at -52 and -69 has the most impact on GSTA1 expression, however other SNPs have a significant impact on transcriptional activity. Based on LRA, a new model of cis-elements interaction is presented. Due to the significant differences in GSTA1 diplotype population frequencies, future pharmacogenomics or disease-related studies would benefit from the inclusion of the complete GSTA1 promoter haplotype based on the newly proposed metabolic grouping derived from the LRA results.


Asunto(s)
Genética de Población , Genoma Humano , Glutatión Transferasa/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , África , Américas , Asia , Sitios de Unión , Europa (Continente) , Regulación de la Expresión Génica , Genes Reporteros , Glutatión Transferasa/metabolismo , Haplotipos , Células Hep G2 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
5.
J Exp Clin Cancer Res ; 38(1): 69, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755224

RESUMEN

BACKGROUND: Neuroblastoma is the most common extracranial solid tumor in children. This cancer has a low frequency of TP53 mutations and its downstream pathway is usually intact. This study assessed the efficacy of the p53 activator, PRIMA-1MET, in inducing neuroblastoma cell death. METHODS: CellTiter 2.0 was used to study susceptibility and specificity of NB cell lines to PRIMA-1MET. Real-time PCR and western blot were used to assess the most common p53 transactivation targets. Induction of p53 and Noxa, and inhibition of Cas3/7, were used to assess impact on cell death after PRIMA-1MET treatment. Flow cytometry was used to analyze cell cycle phase and induction of apoptosis, reactive oxygen species, and the collapse of mitochondrial membrane potential. RESULTS: Neuroblastoma cell lines were at least four times more susceptible to PRIMA-1MET than were primary fibroblasts and keratinocyte cell lines. PRIMA-1MET induced cell death rapidly and in all cell cycle phases. Although PRIMA-1MET activated p53 transactivation activity, p53's role is likely limited because its main targets remained unaffected, whereas pan-caspase inhibitor demonstrated no ability to prevent cell death. PRIMA-1MET induced oxidative stress and modulated the methionine/cysteine/glutathione axis. Variations of MYCN and p53 modulated intracellular levels of GSH and resulted in increased/decreased sensitivity of PRIMA-1MET. PRIMA-1MET inhibited thioredoxin reductase, but the effect of PRIMA-1MET was not altered by thioredoxin inhibition. CONCLUSIONS: PRIMA-1MET could be a promising new agent to treat neuroblastoma because it demonstrated good anti-tumor action. Although p53 is involved in PRIMA-1MET-mediated cell death, our results suggest that direct interaction with p53 has a limited role in neuroblastoma but rather acts through modulation of GSH levels.


Asunto(s)
Glutatión/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/tratamiento farmacológico , Quinuclidinas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Proteína p53 Supresora de Tumor/genética
6.
Oncotarget ; 8(53): 90852-90867, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29207608

RESUMEN

Busulfan (BU) dose adjustment following therapeutic drug monitoring contributes to better outcome of hematopoietic stem cell transplantation (HSCT). Further improvement could be achieved through genotype-guided BU dose adjustments. To investigate this aspect, polymorphism within glutathione S transferase genes were assessed. Particularly, promoter haplotypes of the glutathione S transferase A1 (GSTA1) were evaluated in vitro, with reporter gene assays and clinically, in a pediatric multi-center study (N =138) through association with BU pharmacokinetics (PK) and clinical outcomes. Promoter activity significantly differed between the GSTA1 haplotypes (p<0.001) supporting their importance in capturing PK variability. Four GSTA1 diplotype groups that significantly correlated with clearance (p=0.009) were distinguished. Diplotypes underlying fast and slow metabolizing capacity showed higher and lower BU clearance (ml/min/kg), respectively. GSTA1 diplotypes with slow metabolizing capacity were associated with higher incidence of sinusoidal obstruction syndrome, acute graft versus host disease and combined treatment-related toxicity (p<0.0005). Among other GST genes investigated, GSTP1 313GG correlated with acute graft versus host disease grade 1-4 (p=0.01) and GSTM1 non-null genotype was associated with hemorrhagic cystitis (p=0.003). This study further strengthens the hypothesis that GST diplotypes/genotypes could be incorporated into already existing population pharmacokinetic models for improving first BU dose prediction and HSCT outcomes. (No Clinicaltrials.gov identifier: NCT01257854. Registered 8 December 2010, retrospectively registered).

7.
Oncotarget ; 6(21): 18558-76, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26053094

RESUMEN

Neuroblastoma, a childhood cancer with highly heterogeneous biology and clinical behavior, is characterized by genomic aberrations including amplification of MYCN. Hemizygous deletion of chromosome 11q is a well-established, independent marker of poor prognosis. While 11q22-q23 is the most frequently deleted region, the neuroblastoma tumor suppressor in this region remains to be identified. Chromosome bands 11q22-q23 contain ATM, a cell cycle checkpoint kinase and tumor suppressor playing a pivotal role in the DNA damage response. Here, we report that haploinsufficiency of ATM in neuroblastoma correlates with lower ATM expression, event-free survival, and overall survival. ATM loss occurs in high stage neuroblastoma without MYCN amplification. In SK-N-SH, CLB-Ga and GI-ME-N human neuroblastoma cells, stable ATM silencing promotes neuroblastoma progression in soft agar assays, and in subcutaneous xenografts in nude mice. This effect is dependent on the extent of ATM silencing and does not appear to involve MYCN. Our findings identify ATM as a potential haploinsufficient neuroblastoma tumor suppressor, whose inactivation mirrors the increased aggressiveness associated with 11q deletion in neuroblastoma.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Interferencia de ARN , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Western Blotting , Línea Celular Tumoral , Proliferación Celular/genética , Niño , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Desnudos , Mutación , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Supervivencia , Trasplante Heterólogo , Carga Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA