Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Genet ; 106(3): 234-246, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38561231

RESUMEN

Xq28 int22h-1/int22h-2 duplication is the result of non-allelic homologous recombination between int22h-1/int22h-2 repeats separated by 0.5 Mb. It is responsible for a syndromic form of intellectual disability (ID), with recurrent infections and atopic diseases. Minor defects, nonspecific facial dysmorphic features, and overweight have also been described. Half of female carriers have been reported with ID, whereas all reported evaluated born males present mild to moderate ID, suggesting complete penetrance. We collected data on 15 families from eight university hospitals. Among them, 40 patients, 21 females (one fetus), and 19 males (two fetuses), were carriers of typical or atypical Xq28 int22h-1/int22h-2 duplication. Twenty-one individuals were considered asymptomatic (16 females and 5 males), without significantly higher rate of recurrent infections, atopia, overweight, or facial dysmorphism. Approximately 67% live-born males and 23% live-born female carriers of the typical duplication did not have obvious signs of intellectual disability, suggesting previously undescribed incomplete penetrance or low expression in certain carriers. The possibility of a second-hit or modifying factors to this possible susceptibility locus is yet to be studied but a possible observational bias should be considered in assessing such challenging X-chromosome copy number gains. Additional segregation studies should help to quantify this newly described incomplete penetrance.


Asunto(s)
Cromosomas Humanos X , Discapacidad Intelectual , Penetrancia , Humanos , Masculino , Femenino , Cromosomas Humanos X/genética , Discapacidad Intelectual/genética , Niño , Adulto , Adolescente , Preescolar , Fenotipo , Duplicación Cromosómica/genética , Duplicación de Gen , Linaje , Adulto Joven
2.
Am J Med Genet A ; 194(4): e63476, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37974505

RESUMEN

Cat Eye Syndrome (CES) is a rare genetic disease caused by the presence of a small supernumerary marker chromosome derived from chromosome 22, which results in a partial tetrasomy of 22p-22q11.21. CES is classically defined by association of iris coloboma, anal atresia, and preauricular tags or pits, with high clinical and genetic heterogeneity. We conducted an international retrospective study of patients carrying genomic gain in the 22q11.21 chromosomal region upstream from LCR22-A identified using FISH, MLPA, and/or array-CGH. We report a cohort of 43 CES cases. We highlight that the clinical triad represents no more than 50% of cases. However, only 16% of CES patients presented with the three signs of the triad and 9% not present any of these three signs. We also highlight the importance of other impairments: cardiac anomalies are one of the major signs of CES (51% of cases), and high frequency of intellectual disability (47%). Ocular motility defects (45%), abdominal malformations (44%), ophthalmologic malformations (35%), and genitourinary tract defects (32%) are other frequent clinical features. We observed that sSMC is the most frequent chromosomal anomaly (91%) and we highlight the high prevalence of mosaic cases (40%) and the unexpectedly high prevalence of parental transmission of sSMC (23%). Most often, the transmitting parent has mild or absent features and carries the mosaic marker at a very low rate (<10%). These data allow us to better delineate the clinical phenotype associated with CES, which must be taken into account in the cytogenetic testing for this syndrome. These findings draw attention to the need for genetic counseling and the risk of recurrence.


Asunto(s)
Aneuploidia , Trastornos de los Cromosomas , Cromosomas Humanos Par 22 , Anomalías del Ojo , Cardiopatías Congénitas , Humanos , Estudios Retrospectivos , Hibridación Fluorescente in Situ , Cromosomas Humanos Par 22/genética , Cardiopatías Congénitas/genética
3.
J Med Genet ; 61(1): 36-46, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37586840

RESUMEN

PURPOSE: Wide access to clinical exome/genome sequencing (ES/GS) enables the identification of multiple molecular diagnoses (MMDs), being a long-standing but underestimated concept, defined by two or more causal loci implicated in the phenotype of an individual with a rare disease. Only few series report MMDs rates (1.8% to 7.1%). This study highlights the increasing role of MMDs in a large cohort of individuals addressed for congenital anomalies/intellectual disability (CA/ID). METHODS: From 2014 to 2021, our diagnostic laboratory rendered 880/2658 positive ES diagnoses for CA/ID aetiology. Exhaustive search on MMDs from ES data was performed prospectively (January 2019 to December 2021) and retrospectively (March 2014 to December 2018). RESULTS: MMDs were identified in 31/880 individuals (3.5%), responsible for distinct (9/31) or overlapping (22/31) phenotypes, and potential MMDs in 39/880 additional individuals (4.4%). CONCLUSION: MMDs are frequent in CA/ID and remain a strong challenge. Reanalysis of positive ES data appears essential when phenotypes are partially explained by the initial diagnosis or atypically enriched overtime. Up-to-date clinical data, clinical expertise from the referring physician, strong interactions between clinicians and biologists, and increasing gene discoveries and improved ES bioinformatics tools appear all the more fundamental to enhance chances of identifying MMDs. It is essential to provide appropriate patient care and genetic counselling.


Asunto(s)
Discapacidad Intelectual , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Estudios Retrospectivos , Fenotipo , Secuenciación del Exoma , Enfermedades Raras/genética
4.
Genet Med ; 24(5): 1096-1107, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35063350

RESUMEN

PURPOSE: Rare genetic variants in CDK13 are responsible for CDK13-related disorder (CDK13-RD), with main clinical features being developmental delay or intellectual disability, facial features, behavioral problems, congenital heart defect, and seizures. In this paper, we report 18 novel individuals with CDK13-RD and provide characterization of genome-wide DNA methylation. METHODS: We obtained clinical phenotype and neuropsychological data for 18 and 10 individuals, respectively, and compared this series with the literature. We also compared peripheral blood DNA methylation profiles in individuals with CDK13-RD, controls, and other neurodevelopmental disorders episignatures. Finally, we developed a support vector machine-based classifier distinguishing CDK13-RD and non-CDK13-RD samples. RESULTS: We reported health and developmental parameters, clinical data, and neuropsychological profile of individuals with CDK13-RD. Genome-wide differential methylation analysis revealed a global hypomethylated profile in individuals with CDK13-RD in a highly sensitive and specific model that could aid in reclassifying variants of uncertain significance. CONCLUSION: We describe the novel features such as anxiety disorder, cryptorchidism, and disrupted sleep in CDK13-RD. We define a CDK13-RD DNA methylation episignature as a diagnostic tool and a defining functional feature of the evolving clinical presentation of this disorder. We also show overlap of the CDK13 DNA methylation profile in an individual with a functionally and clinically related CCNK-related disorder.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Proteína Quinasa CDC2/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Masculino , Trastornos del Neurodesarrollo/genética , Fenotipo
5.
Am J Med Genet A ; 188(9): 2627-2636, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35789103

RESUMEN

We present the phenotypes of seven previously unreported patients with Marbach-Schaaf neurodevelopmental syndrome, all carrying the same recurrent heterozygous missense variant c.1003C>T (p.Arg335Trp) in PRKAR1B. Clinical features of this cohort include global developmental delay and reduced sensitivity to pain, as well as behavioral anomalies. Only one of the seven patients reported here was formally diagnosed with autism spectrum disorder (ASD), while ASD-like features were described in others, overall indicating a lower prevalence of ASD in Marbach-Schaaf neurodevelopmental syndrome than previously assumed. The clinical spectrum of the current cohort is similar to that reported in the initial publication, delineating a complex developmental disorder with behavioral and neurologic features. PRKAR1B encodes the regulatory subunit R1ß of the protein kinase A complex (PKA), and is expressed in the adult and embryonal central nervous system in humans. PKA is crucial to a plethora of cellular signaling pathways, and its composition of different regulatory and catalytic subunits is cell-type specific. We discuss potential molecular disease mechanisms underlying the patients' phenotypes with respect to the different known functions of PKA in neurons, and the phenotypes of existing R1ß-deficient animal models.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Adulto , Animales , Trastorno del Espectro Autista/genética , Estudios de Cohortes , Humanos , Trastornos del Neurodesarrollo/genética , Fenotipo , Síndrome
6.
J Med Genet ; 58(6): 400-413, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32732226

RESUMEN

PURPOSE: Molecular diagnosis based on singleton exome sequencing (sES) is particularly challenging in fetuses with multiple congenital abnormalities (MCA). Indeed, some studies reveal a diagnostic yield of about 20%, far lower than in live birth individuals showing developmental abnormalities (30%), suggesting that standard analyses, based on the correlation between clinical hallmarks described in postnatal syndromic presentations and genotype, may underestimate the impact of the genetic variants identified in fetal analyses. METHODS: We performed sES in 95 fetuses with MCA. Blind to phenotype, we applied a genotype-first approach consisting of combined analyses based on variants annotation and bioinformatics predictions followed by reverse phenotyping. Initially applied to OMIM-morbid genes, analyses were then extended to all genes. We complemented our approach by using reverse phenotyping, variant segregation analysis, bibliographic search and data sharing in order to establish the clinical significance of the prioritised variants. RESULTS: sES rapidly identified causal variant in 24/95 fetuses (25%), variants of unknown significance in OMIM genes in 8/95 fetuses (8%) and six novel candidate genes in 6/95 fetuses (6%). CONCLUSIONS: This method, based on a genotype-first approach followed by reverse phenotyping, shed light on unexpected fetal phenotype-genotype correlations, emphasising the relevance of prenatal studies to reveal extreme clinical presentations associated with well-known Mendelian disorders.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Congénitas/genética , Exoma , Feto/anomalías , Estudios de Asociación Genética , Estudios de Cohortes , Exoma/genética , Genotipo , Humanos , Análisis de Secuencia de ADN
7.
Clin Genet ; 100(4): 405-411, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34196401

RESUMEN

Tenorio syndrome (TNORS) (OMIM #616260) is a relatively recent disorder with very few cases described so far. Clinical features included macrocephaly, intellectual disability, hypotonia, enlarged ventricles and autoimmune diseases. Molecular underlying mechanism demonstrated missense variants and a large deletion encompassing RNF125, a gene that encodes for an U3 ubiquitin ligase protein. Since the initial description of the disorder in six patients from four families, several new patients were diagnosed, adding more evidence to the clinical spectrum. In this article, we described 14 additional cases with deep phenotyping and make an overall review of all the cases with pathogenic variants in RNF125. Not all patients presented with overgrowth, but instead, most patients showed a common pattern of neurodevelopmental disease, macrocephaly and/or large forehead. Segregation analysis showed that, though the variant was inherited in some patients from an apparently asymptomatic parent, deep phenotyping suggested a mild form of the disease in some of them. The mechanism underlying the development of this disease is not well understood yet and the report of further cases will help to a better understanding and clinical characterization of the syndrome.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Fenotipo , Alelos , Sustitución de Aminoácidos , Bases de Datos Genéticas , Facies , Estudios de Asociación Genética/métodos , Variación Genética , Genotipo , Humanos , Síndrome , Ubiquitina-Proteína Ligasas/genética , Secuenciación del Exoma
8.
J Med Genet ; 57(3): 160-168, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31586944

RESUMEN

BACKGROUND: The type 1 insulin-like growth factor receptor (IGF1R) is a keystone of fetal growth regulation by mediating the effects of IGF-I and IGF-II. Recently, a cohort of patients carrying an IGF1R defect was described, from which a clinical score was established for diagnosis. We assessed this score in a large cohort of patients with identified IGF1R defects, as no external validation was available. Furthermore, we aimed to develop a functional test to allow the classification of variants of unknown significance (VUS) in vitro. METHODS: DNA was tested for either deletions or single nucleotide variant (SNV) and the phosphorylation of downstream pathways studied after stimulation with IGF-I by western blot analysis of fibroblast of nine patients. RESULTS: We detected 21 IGF1R defects in 35 patients, including 8 deletions and 10 heterozygous, 1 homozygous and 1 compound-heterozygous SNVs. The main clinical characteristics of these patients were being born small for gestational age (90.9%), short stature (88.2%) and microcephaly (74.1%). Feeding difficulties and varying degrees of developmental delay were highly prevalent (54.5%). There were no differences in phenotypes between patients with deletions and SNVs of IGF1R. Functional studies showed that the SNVs tested were associated with decreased AKT phosphorylation. CONCLUSION: We report eight new pathogenic variants of IGF1R and an original case with a homozygous SNV. We found the recently proposed clinical score to be accurate for the diagnosis of IGF1R defects with a sensitivity of 95.2%. We developed an efficient functional test to assess the pathogenicity of SNVs, which is useful, especially for VUS.


Asunto(s)
Anomalías Múltiples/genética , Desarrollo Fetal/genética , Retardo del Crecimiento Fetal/genética , Trastornos del Crecimiento/genética , Receptor IGF Tipo 1/genética , Anomalías Múltiples/epidemiología , Anomalías Múltiples/fisiopatología , Adolescente , Niño , Enanismo/genética , Enanismo/fisiopatología , Femenino , Retardo del Crecimiento Fetal/epidemiología , Retardo del Crecimiento Fetal/fisiopatología , Trastornos del Crecimiento/epidemiología , Trastornos del Crecimiento/fisiopatología , Heterocigoto , Homocigoto , Humanos , Recién Nacido Pequeño para la Edad Gestacional/crecimiento & desarrollo , Factor I del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Microcefalia/genética , Microcefalia/fisiopatología , Mutación Missense/genética , Linaje , Polimorfismo de Nucleótido Simple/genética , Receptores de Somatomedina/genética
9.
Hum Mutat ; 41(3): 608-618, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31729086

RESUMEN

Nijmegen breakage syndrome caused by biallelic pathogenic variants of the DNA-damage response gene NBN, is characterized by severe microcephaly, cancer proneness, infertility, and karyotype abnormalities. We previously reported NBN variants in siblings suffering from fertility defects. Here, we identify a new founder NBN variant (c.442A>G, p.(Thr148Ala)) in Lebanese patients associated with isolated infertility. Functional analyses explored preserved or altered functions correlated with their remarkably mild phenotype. Transcript and protein analyses supported the use of an alternative transcript with in-frame skipping of exons 4-5, leading to p84-NBN protein with a preserved forkhead-associated (FHA) domain. The level of NBN was dramatically reduced and the MRN complex delocalized to the cytoplasm. Interestingly, ataxia-elangiectasia mutated (ATM) also shifted from the nucleus to the cytoplasm, suggesting some interaction between ATM and the MRN complex at a steady state. The ATM pathway activation, attenuated in typical patients with NBS, appeared normal under camptothecin treatment in these new NBN-related infertile patients. Cell cycle checkpoint defect was present in these atypical patients, although to a lesser extent than in typical patients with NBS. In conclusion, we report three new NBN-related infertile patients and we suggest that preserved FHA domain could be responsible for the mild phenotype and intermediate DNA-damage response defects.


Asunto(s)
Proteínas de Ciclo Celular/genética , Reparación del ADN , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Infertilidad/diagnóstico , Infertilidad/genética , Proteínas Nucleares/genética , Adulto , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Análisis Mutacional de ADN , Femenino , Citometría de Flujo , Regulación de la Expresión Génica , Estudios de Asociación Genética/métodos , Humanos , Infertilidad/metabolismo , Masculino , Síndrome de Nijmegen/diagnóstico , Síndrome de Nijmegen/genética , Síndrome de Nijmegen/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Transducción de Señal
11.
J Med Genet ; 56(10): 701-710, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451536

RESUMEN

BACKGROUND: The 15q11.2 deletion is frequently identified in the neurodevelopmental clinic. Case-control studies have associated the 15q11.2 deletion with neurodevelopmental disorders, and clinical case series have attempted to delineate a microdeletion syndrome with considerable phenotypic variability. The literature on this deletion is extensive and confusing, which is a challenge for genetic counselling. The aim of this study was to estimate the effect size of the 15q11.2 deletion and quantify its contribution to neurodevelopmental disorders. METHODS: We performed meta-analyses on new and previously published case-control studies and used statistical models trained in unselected populations with cognitive assessments. We used new (n=241) and previously published (n=150) data from a clinically referred group of deletion carriers. 15q11.2 duplications (new n=179 and previously published n=35) were used as a neutral control variant. RESULTS: The deletion decreases IQ by 4.3 points. The estimated ORs and respective frequencies in deletion carriers for intellectual disabilities, schizophrenia and epilepsy are 1.7 (3.4%), 1.5 (2%) and 3.1 (2.1%), respectively. There is no increased risk for heart malformations and autism. In the clinically referred group, the frequency and nature of symptoms in deletions are not different from those observed in carriers of the 15q11.2 duplication suggesting that most of the reported symptoms are due to ascertainment bias. CONCLUSIONS: We recommend that the deletion should be classified as 'pathogenic of mild effect size'. Since it explains only a small proportion of the phenotypic variance in carriers, it is not worth discussing in the developmental clinic or in a prenatal setting.


Asunto(s)
Trastorno Autístico/genética , Variaciones en el Número de Copia de ADN , Epilepsia/genética , Cardiopatías/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Cardiopatías/congénito , Humanos , Mutación con Pérdida de Función , Masculino , Eliminación de Secuencia
12.
J Med Genet ; 56(8): 526-535, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30923172

RESUMEN

BACKGROUND: Balanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies. METHODS: Breakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA. RESULTS: Among the 55 patients included (41 reciprocal translocations, 4 inversions, 2 insertions and 8 complex chromosomal rearrangements), we were able to detect 89% of chromosomal rearrangements (49/55). Molecular signatures at the breakpoints suggested that DNA breaks arose randomly and that there was no major influence of repeated elements. Non-homologous end-joining appeared as the main mechanism of repair (55% of rearrangements). A diagnosis could be established in 22/49 patients (44.8%), 15 by gene disruption (KANSL1, FOXP1, SPRED1, TLK2, MBD5, DMD, AUTS2, MEIS2, MEF2C, NRXN1, NFIX, SYNGAP1, GHR, ZMIZ1) and 7 by position effect (DLX5, MEF2C, BCL11B, SATB2, ZMIZ1). In addition, 16 new candidate genes were identified. Systematic gene expression studies further supported these results. We also showed the contribution of topologically associated domain maps to WGS data interpretation. CONCLUSION: Paired-end WGS is a valid strategy and may be used for structural variation characterisation in a clinical setting.


Asunto(s)
Aberraciones Cromosómicas , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Reordenamiento Génico , Estudios de Asociación Genética , Fenotipo , Secuenciación Completa del Genoma , Adolescente , Adulto , Biomarcadores , Niño , Preescolar , Puntos de Rotura del Cromosoma , Variaciones en el Número de Copia de ADN , Femenino , Estudios de Asociación Genética/métodos , Humanos , Lactante , Masculino , Relación Estructura-Actividad , Translocación Genética , Adulto Joven
13.
Genet Med ; 20(4): 458-463, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28837157

RESUMEN

PurposeMutations in genes involved in Fanconi anemia (FA)/BRCA DNA repair pathway cause cancer susceptibility diseases including familial breast cancer and Fanconi anemia (FA). A single FA patient with biallelic FANCM mutations was reported in 2005 but concurrent FANCA pathogenic mutations precluded assignment of FANCM as an FA gene. Here we report three individuals with biallelic FANCM truncating mutations who developed early-onset cancer and toxicity to chemotherapy but did not present congenital malformations or any hematological phenotype suggestive of FA.MethodsChromosomal breakages, interstrand crosslink sensitivity, and FANCD2 monoubiquitination were assessed in primary fibroblasts. Mutation analysis was achieved through Sanger sequencing. Genetic complementation of patient-derived cells was performed by lentiviral mediated transduction of wild-type FANCM complementary DNA followed by functional studies.ResultsPatient-derived cells exhibited chromosomal fragility, hypersensitivity to interstrand crosslinks, and impaired FANCD2 monoubiquitination. We identified two homozygous mutations (c.2586_2589del4; p.Lys863Ilefs*12 and c.1506_1507insTA; p.Ile503*) in FANCM as the cause of the cellular phenotype. Patient-derived cells were genetically complemented upon wild-type FANCM complementary DNA expression.ConclusionLoss-of-function mutations in FANCM cause a cancer predisposition syndrome clinically distinct from bona fide FA. Care should be taken with chemotherapy and radiation treatments in these patients due to expected acute toxicity.


Asunto(s)
Alelos , ADN Helicasas/genética , Anemia de Fanconi/genética , Predisposición Genética a la Enfermedad , Neoplasias/diagnóstico , Neoplasias/genética , Eliminación de Secuencia , Adolescente , Línea Celular , Fragilidad Cromosómica/efectos de los fármacos , ADN Helicasas/metabolismo , Femenino , Estudios de Asociación Genética , Prueba de Complementación Genética , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo
14.
Am J Med Genet A ; 176(3): 668-675, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29341480

RESUMEN

The cutis laxa syndromes are multisystem disorders that share loose redundant inelastic and wrinkled skin as a common hallmark clinical feature. The underlying molecular defects are heterogeneous and 13 different genes have been involved until now, all of them being implicated in elastic fiber assembly. We provide here molecular and clinical characterization of three unrelated patients with a very rare phenotype associating cutis laxa, facial dysmorphism, severe growth retardation, hyperostotic skeletal dysplasia, and intellectual disability. This disorder called Lenz-Majewski syndrome (LMS) is associated with gain of function mutations in PTDSS1, encoding an enzyme involved in phospholipid biosynthesis. This report illustrates that LMS is an unequivocal cutis laxa syndrome and expands the clinical and molecular spectrum of this group of disorders. In the neonatal period, brachydactyly and facial dysmorphism are two early distinctive signs, later followed by intellectual disability and hyperostotic skeletal dysplasia with severe dwarfism allowing differentiation of this condition from other cutis laxa phenotypes. Further studies are needed to understand the link between PTDSS1 and extra cellular matrix assembly.


Asunto(s)
Cutis Laxo/diagnóstico , Cutis Laxo/genética , Hiperostosis/diagnóstico , Hiperostosis/genética , Mutación , Transferasas de Grupos Nitrogenados/genética , Fenotipo , Adulto , Alelos , Niño , Preescolar , Exones , Facies , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Radiografía
15.
PLoS Genet ; 10(9): e1004580, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25188300

RESUMEN

SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Trastornos del Conocimiento/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Estudios de Casos y Controles , Niño , Cognición/fisiología , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Neuronas/fisiología , Sinapsis/genética
16.
Prenat Diagn ; 36(6): 523-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27018091

RESUMEN

OBJECTIVE: Sex chromosome aneuploidies are frequently detected fortuitously in a prenatal diagnosis. Most cases of 47, XXX and 47, XYY syndromes are diagnosed in this context, and parents are thus faced with an unexpected situation. The objective of the present study was to characterize a French cohort of prenatally diagnosed cases of 47, XXX and 47, XYY and to evaluate the termination of pregnancy (TOP) rate before and after France's implementation of multidisciplinary centres for prenatal diagnosis in 1997. METHODS: This retrospective study identified respectively 291 and 175 cases of prenatally diagnosed 47, XXX and 47, XYY between 1976 and 2012. For each case, the indication, maternal age, karyotype and outcome were recorded. RESULTS: Most diagnoses of the two conditions were fortuitous. The occurrence of 47, XXX was associated with advanced maternal age. The overall TOP rate was higher for 47, XXX (22.9%) than for 47, XYY (14.6%), although this difference was not statistically significant. However, the TOP rates fell significantly after 1997 (from 41.1% to 11.8% for 47, XXX and from 25.8% to 6.7% for 47, XYY). CONCLUSION: The TOP rates after prenatal diagnoses of 47, XXX and 47, XYY fell significantly after 1997, following France's implementation of multidisciplinary centres for prenatal diagnosis. © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Aborto Inducido/estadística & datos numéricos , Aborto Espontáneo/epidemiología , Resultado del Embarazo/epidemiología , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/epidemiología , Trastornos de los Cromosomas Sexuales/epidemiología , Cariotipo XYY/epidemiología , Aborto Inducido/tendencias , Adulto , Amniocentesis , Muestra de la Vellosidad Coriónica , Cromosomas Humanos X , Estudios de Cohortes , Femenino , Muerte Fetal , Francia/epidemiología , Humanos , Edad Materna , Embarazo , Diagnóstico Prenatal , Estudios Retrospectivos , Aberraciones Cromosómicas Sexuales , Trastornos de los Cromosomas Sexuales/diagnóstico , Trastornos de los Cromosomas Sexuales/diagnóstico por imagen , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/diagnóstico , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/diagnóstico por imagen , Trisomía/diagnóstico , Cariotipo XYY/diagnóstico , Cariotipo XYY/diagnóstico por imagen
17.
Hum Mutat ; 36(9): 894-902, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26077438

RESUMEN

Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder associating macroglossia, abdominal wall defects, visceromegaly, and a high risk of childhood tumor. Molecular anomalies are mostly epigenetic; however, mutations of CDKN1C are implicated in 8% of cases, including both sporadic and familial forms. We aimed to describe the phenotype of BWS patients with CDKN1C mutations and develop a functional test for CDKN1C mutations. For each propositus, we sequenced the three exons and intron-exon boundaries of CDKN1C in patients presenting a BWS phenotype, including abdominal wall defects, without 11p15 methylation defects. We developed a functional test based on flow cytometry. We identified 37 mutations in 38 pedigrees (50 patients and seven fetuses). Analysis of parental samples when available showed that all mutations tested but one was inherited from the mother. The four missense mutations led to a less severe phenotype (lower frequency of exomphalos) than the other 33 mutations. The following four tumors occurred: one neuroblastoma, one ganglioneuroblastoma, one melanoma, and one acute lymphoid leukemia. Cases of BWS caused by CDKN1C mutations are not rare. CDKN1C sequencing should be performed for BWS patients presenting with abdominal wall defects or cleft palate without 11p15 methylation defects or body asymmetry, or in familial cases of BWS.


Asunto(s)
Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Estudios de Asociación Genética , Impresión Genómica , Fenotipo , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Genotipo , Humanos , Masculino , Datos de Secuencia Molecular , Mutación , Linaje , Alineación de Secuencia
18.
Eur J Hum Genet ; 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39448799

RESUMEN

An increasing number of individuals with intellectual developmental disorder (IDD) and heterozygous variants in BCL11A are identified, yet our knowledge of manifestations and mutational spectrum is lacking. To address this, we performed detailed analysis of 42 individuals with BCL11A-related IDD (BCL11A-IDD, a.k.a. Dias-Logan syndrome) ascertained through an international collaborative network, and reviewed 35 additional previously reported patients. Analysis of 77 affected individuals identified 60 unique disease-causing variants (30 frameshift, 7 missense, 6 splice-site, 17 stop-gain) and 8 unique BCL11A microdeletions. We define the most prevalent features of BCL11A-IDD: IDD, postnatal-onset microcephaly, hypotonia, behavioral abnormalities, autism spectrum disorder, and persistence of fetal hemoglobin (HbF), and identify autonomic dysregulation as new feature. BCL11A-IDD is distinguished from 2p16 microdeletion syndrome, which has a higher incidence of congenital anomalies. Our results underscore BCL11A as an important transcription factor in human hindbrain development, identifying a previously underrecognized phenotype of a small brainstem with a reduced pons/medulla ratio. Genotype-phenotype correlation revealed an isoform-dependent trend in severity of truncating variants: those affecting all isoforms are associated with higher frequency of hypotonia, and those affecting the long (BCL11A-L) and extra-long (-XL) isoforms, sparing the short (-S), are associated with higher frequency of postnatal microcephaly. With the largest international cohort to date, this study highlights persistence of fetal hemoglobin as a consistent biomarker and hindbrain abnormalities as a common feature. It contributes significantly to our understanding of BCL11A-IDD through an extensive unbiased multi-center assessment, providing valuable insights for diagnosis, management and counselling, and into BCL11A's role in brain development.

19.
Am J Med Genet A ; 161A(12): 3063-71, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24039113

RESUMEN

FG syndrome, Lujan syndrome, and Ohdo syndrome, the Maat-Kievit-Brunner type, have been described as distinct syndromes with overlapping non-specific features and different missense mutations of the MED12 gene have been reported in all of them. We report a family including 10 males and 1 female affected with profound non-specific intellectual disability (ID) which was linked to a 30-cM region extending from Xp11.21 (ALAS2) to Xq22.3 (COL4A5). Parallel sequencing of all X-chromosome exons identified a frameshift mutation (c.5898dupC) of MED12. Mutated mRNA was not affected by non-sense mediated RNA decay and induced an additional abnormal isoform due to activation of cryptic splice-sites in exon 41. Dysmorphic features common to most affected males were long narrow face, high forehead, flat malar area, high nasal bridge, and short philtrum. Language was absent or very limited. Most patients had a friendly personality. Cognitive impairment, varying from borderline to profound ID was similarly observed in seven heterozygous females. There was no correlation between cognitive function and X-chromosome inactivation profiles in blood cells. The severe degree of ID in male patients, as well as variable cognitive impairment in heterozygous females suggests that the duplication observed in the present family may have a more severe effect on MED12 function than missense mutations. In a cognitively impaired male from this family, who also presented with tall stature and dysmorphism and did not have the MED12 mutation, a 600-kb duplication at 17p13.3 including the YWHAE gene, was found in a mosaic state.


Asunto(s)
Anomalías Múltiples/genética , Agenesia del Cuerpo Calloso/genética , Ano Imperforado/genética , Blefarofimosis/genética , Blefaroptosis/genética , Estreñimiento/genética , Enfermedades Genéticas Ligadas al Cromosoma X , Cardiopatías Congénitas/genética , Discapacidad Intelectual/genética , Complejo Mediador/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Hipotonía Muscular/congénito , Proteínas 14-3-3/genética , Anomalías Múltiples/fisiopatología , Adulto , Anciano , Agenesia del Cuerpo Calloso/fisiopatología , Ano Imperforado/fisiopatología , Blefarofimosis/fisiopatología , Blefaroptosis/fisiopatología , Cromosomas Humanos X/genética , Estreñimiento/fisiopatología , Exones , Femenino , Mutación del Sistema de Lectura , Cardiopatías Congénitas/fisiopatología , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/fisiopatología , Persona de Mediana Edad , Hipotonía Muscular/genética , Hipotonía Muscular/fisiopatología , Mutación , Inactivación del Cromosoma X/genética
20.
Front Genet ; 14: 1122985, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152996

RESUMEN

Introduction: Exome sequencing has a diagnostic yield ranging from 25% to 70% in rare diseases and regularly implicates genes in novel disorders. Retrospective data reanalysis has demonstrated strong efficacy in improving diagnosis, but poses organizational difficulties for clinical laboratories. Patients and methods: We applied a reanalysis strategy based on intensive prospective bibliographic monitoring along with direct application of the GREP command-line tool (to "globally search for a regular expression and print matching lines") in a large ES database. For 18 months, we submitted the same five keywords of interest [(intellectual disability, (neuro)developmental delay, and (neuro)developmental disorder)] to PubMed on a daily basis to identify recently published novel disease-gene associations or new phenotypes in genes already implicated in human pathology. We used the Linux GREP tool and an in-house script to collect all variants of these genes from our 5,459 exome database. Results: After GREP queries and variant filtration, we identified 128 genes of interest and collected 56 candidate variants from 53 individuals. We confirmed causal diagnosis for 19/128 genes (15%) in 21 individuals and identified variants of unknown significance for 19/128 genes (15%) in 23 individuals. Altogether, GREP queries for only 128 genes over a period of 18 months permitted a causal diagnosis to be established in 21/2875 undiagnosed affected probands (0.7%). Conclusion: The GREP query strategy is efficient and less tedious than complete periodic reanalysis. It is an interesting reanalysis strategy to improve diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA