RESUMEN
To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.
Asunto(s)
Melanoma , Humanos , Redes Reguladoras de Genes , Inmunoterapia , Melanocitos , Melanoma/tratamiento farmacológico , Melanoma/genética , Factor de Transcripción 4/genética , Microambiente TumoralRESUMEN
Reprogramming of mRNA translation has a key role in cancer development and drug resistance 1 . However, the molecular mechanisms that are involved in this process remain poorly understood. Wobble tRNA modifications are required for specific codon decoding during translation2,3. Here we show, in humans, that the enzymes that catalyse modifications of wobble uridine 34 (U34) tRNA (U34 enzymes) are key players of the protein synthesis rewiring that is induced by the transformation driven by the BRAF V600E oncogene and by resistance to targeted therapy in melanoma. We show that BRAF V600E -expressing melanoma cells are dependent on U34 enzymes for survival, and that concurrent inhibition of MAPK signalling and ELP3 or CTU1 and/or CTU2 synergizes to kill melanoma cells. Activation of the PI3K signalling pathway, one of the most common mechanisms of acquired resistance to MAPK therapeutic agents, markedly increases the expression of U34 enzymes. Mechanistically, U34 enzymes promote glycolysis in melanoma cells through the direct, codon-dependent, regulation of the translation of HIF1A mRNA and the maintenance of high levels of HIF1α protein. Therefore, the acquired resistance to anti-BRAF therapy is associated with high levels of U34 enzymes and HIF1α. Together, these results demonstrate that U34 enzymes promote the survival and resistance to therapy of melanoma cells by regulating specific mRNA translation.
Asunto(s)
Codón/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Biosíntesis de Proteínas , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Codón/efectos de los fármacos , Femenino , Humanos , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Melanoma/patología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosforilación , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Transducción de Señal , Factores de Elongación Transcripcional , Uridina/química , Uridina/genética , Uridina/metabolismo , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Pez Cebra/genéticaRESUMEN
Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down-regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR-depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re-expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor-initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient-rich conditions by repressing translation of selected ISR RNAs.
Asunto(s)
Melanoma , Preparaciones Farmacéuticas , ARN Largo no Codificante , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Línea Celular Tumoral , Humanos , Melanoma/genética , Fosforilación , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismoRESUMEN
There is currently no consensus to determine which advanced melanoma patients will benefit from immunotherapy, highlighting the critical need to identify early-response biomarkers to immune checkpoint inhibitors. The aim of this work was to evaluate in vivo metabolic spectroscopy using hyperpolarized (HP) 13C-pyruvate and 13C-glucose to assess early response to anti-PD1 therapy in the YUMMER1.7 syngeneic melanoma model. The xenografts showed a significant tumor growth delay when treated with two cycles of an anti-PD1 antibody compared to an isotype control antibody. 13C-MRS was performed in vivo after the injection of hyperpolarized 13C-pyruvate, at baseline and after one cycle of immunotherapy, to evaluate early dynamic changes in 13C-pyruvate-13C-lactate exchange. Furthermore, ex vivo 13C-MRS metabolic tracing experiments were performed after U-13C-glucose injection following one cycle of immunotherapy. A significant decrease in the ratio of HP 13C-lactate to 13C-pyruvate was observed in vivo in comparison with the isotype control group, while there was a lack of change in the levels of 13C lactate and 13C alanine issued from 13C glucose infusion, following ex vivo assessment on resected tumors. Thus, these results suggest that hyperpolarized 13C-pyruvate could be used to assess early response to immune checkpoint inhibitors in melanoma patients.
Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Humanos , Ácido Pirúvico/metabolismo , Xenoinjertos , Ácido Láctico/metabolismo , Glucosa , Melanoma/tratamiento farmacológico , Isótopos de CarbonoRESUMEN
Focal amplifications of chromosome 3p13-3p14 occur in about 10% of melanomas and are associated with a poor prognosis. The melanoma-specific oncogene MITF resides at the epicentre of this amplicon. However, whether other loci present in this amplicon also contribute to melanomagenesis is unknown. Here we show that the recently annotated long non-coding RNA (lncRNA) gene SAMMSON is consistently co-gained with MITF. In addition, SAMMSON is a target of the lineage-specific transcription factor SOX10 and its expression is detectable in more than 90% of human melanomas. Whereas exogenous SAMMSON increases the clonogenic potential in trans, SAMMSON knockdown drastically decreases the viability of melanoma cells irrespective of their transcriptional cell state and BRAF, NRAS or TP53 mutational status. Moreover, SAMMSON targeting sensitizes melanoma to MAPK-targeting therapeutics both in vitro and in patient-derived xenograft models. Mechanistically, SAMMSON interacts with p32, a master regulator of mitochondrial homeostasis and metabolism, to increase its mitochondrial targeting and pro-oncogenic function. Our results indicate that silencing of the lineage addiction oncogene SAMMSON disrupts vital mitochondrial functions in a cancer-cell-specific manner; this silencing is therefore expected to deliver highly effective and tissue-restricted anti-melanoma therapeutic responses.
Asunto(s)
Melanoma/genética , Melanoma/patología , Oncogenes/genética , ARN Largo no Codificante/genética , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Proteínas Portadoras , Linaje de la Célula , Proliferación Celular , Supervivencia Celular , Cromosomas Humanos Par 3/genética , Células Clonales/metabolismo , Células Clonales/patología , Femenino , Amplificación de Genes/genética , Técnicas de Silenciamiento del Gen , Humanos , Melanoma/terapia , Ratones , Factor de Transcripción Asociado a Microftalmía/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Terapia Molecular Dirigida , ARN Largo no Codificante/uso terapéutico , Factores de Transcripción SOXE/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Dysregulated splicing is a common event in cancer even in the absence of mutations in the core splicing machinery. The aberrant long non-coding transcriptome constitutes an uncharacterized level of regulation of post-transcriptional events in cancer. Here, we found that the stress-induced long non-coding RNA (lncRNA), LINC02657 or LASTR (lncRNA associated with SART3 regulation of splicing), is upregulated in hypoxic breast cancer and is essential for the growth of LASTR-positive triple-negative breast tumors. LASTR is upregulated in several types of epithelial cancers due to the activation of the stress-induced JNK/c-JUN pathway. Using a mass-spectrometry based approach, we identified the RNA-splicing factor SART3 as a LASTR-interacting partner. We found that LASTR promotes splicing efficiency by controlling SART3 association with the U4 and U6 small nuclear ribonucleoproteins (snRNP) during spliceosome recycling. Intron retention induced by LASTR depletion downregulates expression of essential genes, ultimately decreasing the fitness of cancer cells.
Asunto(s)
Antígenos de Neoplasias/metabolismo , Neoplasias/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Estrés Fisiológico , Animales , Hipoxia de la Célula , Línea Celular Tumoral , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación Neoplásica de la Expresión Génica , Genes Esenciales , Humanos , Intrones/genética , Sistema de Señalización de MAP Quinasas , Ratones Desnudos , Empalme del ARN/genética , ARN Largo no Codificante/genética , Regulación hacia Arriba/genéticaRESUMEN
Mitochondria are critical hubs for the integration of several key metabolic processes implicated in cell growth and survival. They originated from bacterial ancestors through endosymbiosis, following the transfer of more than 90% of their endosymbiont genome to the host cell nucleus. Over time, a mutually beneficial symbiotic relationship has been established, which relies on continuous and elaborate signaling mechanisms between this life-essential organelle and its host. The ability of mitochondria to signal their functional state and trigger compensatory and adaptive cellular responses has long been recognized, but the underlying molecular mechanisms involved have remained poorly understood. Recent evidence indicates that non-coding RNAs (ncRNAs) may contribute to the synchronization of a series of essential cellular and mitochondrial biological processes, acting as "messengers" between the nucleus and the mitochondria. Here, we discuss the emerging putative roles of ncRNAs in various bidirectional signaling pathways established between the host cell and its mitochondria, and how the dysregulation of these pathways may lead to aging-related diseases, including cancer, and offer new promising therapeutic avenues.
Asunto(s)
Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Mitocondrias/metabolismo , ARN no Traducido/metabolismoRESUMEN
We report a high-resolution time series study of transcriptome dynamics following antimiR-mediated inhibition of miR-9 in a Hodgkin lymphoma cell-line-the first such dynamic study of the microRNA inhibition response-revealing both general and specific aspects of the physiological response. We show miR-9 inhibition inducing a multiphasic transcriptome response, with a direct target perturbation before 4 h, earlier than previously reported, amplified by a downstream peak at â¼32 h consistent with an indirect response due to secondary coherent regulation. Predictive modelling indicates a major role for miR-9 in post-transcriptional control of RNA processing and RNA binding protein regulation. Cluster analysis identifies multiple co-regulated gene regulatory modules. Functionally, we observe a shift over time from mRNA processing at early time points to translation at later time points. We validate the key observations with independent time series qPCR and we experimentally validate key predicted miR-9 targets. Methodologically, we developed sensitive functional data analytic predictive methods to analyse the weak response inherent in microRNA inhibition experiments. The methods of this study will be applicable to similar high-resolution time series transcriptome analyses and provides the context for more accurate experimental design and interpretation of future microRNA inhibition studies.
Asunto(s)
Regulación de la Expresión Génica , MicroARNs/antagonistas & inhibidores , Transcriptoma , Línea Celular Tumoral , Análisis por Conglomerados , Genómica , Humanos , Modelos Genéticos , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/metabolismoRESUMEN
Patient-derived xenograft (PDX) models are the golden standard for preclinical oncology as they can recapitulate the genotypic and phenotypic complexity of human tumors, thus enabling the development of effective therapeutic strategies. PDX models are typically established in immunocompromised animals that allow efficient growth of the xenografted tumor. Given the recent success of immune therapies in different tumors however, the establishment of humanized PDX models is critical to evaluate immune oncology drugs and/or combinations thereof. Here, we describe the detailed methods to obtain humanized PDX models for anti-cancer therapy testing.
Asunto(s)
Neoplasias , Animales , Ratones , Humanos , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Modelos Animales de EnfermedadRESUMEN
Upregulation of mitochondrial respiration coupled with high ROS-scavenging capacity is a characteristic shared by drug-tolerant cells in several cancers. As translational fidelity is essential for cell fitness, protection of the mitochondrial and cytosolic ribosomes from oxidative damage is pivotal. While mechanisms for recognising and repairing such damage exist in the cytoplasm, the corresponding process in the mitochondria remains unclear.By performing Ascorbate PEroXidase (APEX)-proximity ligation assay directed to the mitochondrial matrix followed by isolation and sequencing of RNA associated to mitochondrial proteins, we identified the nuclear-encoded lncRNA ROSALIND as an interacting partner of ribosomes. ROSALIND is upregulated in recurrent tumours and its expression can discriminate between responders and non-responders to immune checkpoint blockade in a melanoma cohort of patients. Featuring an unusually high G content, ROSALIND serves as a substrate for oxidation. Consequently, inhibiting ROSALIND leads to an increase in ROS and protein oxidation, resulting in severe mitochondrial respiration defects. This, in turn, impairs melanoma cell viability and increases immunogenicity both in vitro and ex vivo in preclinical humanised cancer models. These findings underscore the role of ROSALIND as a novel ROS buffering system, safeguarding mitochondrial translation from oxidative stress, and shed light on potential therapeutic strategies for overcoming cancer therapy resistance.
RESUMEN
Many cancer cells share with yeast a preference for fermentation over respiration, which is associated with overactive glucose uptake and breakdown, a phenomenon called the Warburg effect in cancer cells. The yeast tps1Δ mutant shows even more pronounced hyperactive glucose uptake and phosphorylation causing glycolysis to stall at GAPDH, initiation of apoptosis through overactivation of Ras and absence of growth on glucose. The goal of the present work was to use the yeast tps1Δ strain to screen for novel compounds that would preferentially inhibit overactive glucose influx into glycolysis, while maintaining basal glucose catabolism. This is based on the assumption that the overactive glucose catabolism of the tps1Δ strain might have a similar molecular cause as the Warburg effect in cancer cells. We have isolated Warbicin ® A as a compound restoring growth on glucose of the yeast tps1Δ mutant, showed that it inhibits the proliferation of cancer cells and isolated structural analogs by screening directly for cancer cell inhibition. The Warbicin ® compounds are the first drugs that inhibit glucose uptake by both yeast Hxt and mammalian GLUT carriers. Specific concentrations did not evoke any major toxicity in mice but increase the amount of adipose tissue likely due to reduced systemic glucose uptake. Surprisingly, Warbicin ® A inhibition of yeast sugar uptake depends on sugar phosphorylation, suggesting transport-associated phosphorylation as a target. In vivo and in vitro evidence confirms physical interaction between yeast Hxt7 and hexokinase. We suggest that reversible transport-associated phosphorylation by hexokinase controls the rate of glucose uptake through hydrolysis of the inhibitory ATP molecule in the cytosolic domain of glucose carriers and that in yeast tps1Δ cells and cancer cells reversibility is compromised, causing constitutively hyperactive glucose uptake and phosphorylation. Based on their chemical structure and properties, we suggest that Warbicin ® compounds replace the inhibitory ATP molecule in the cytosolic domain of the glucose carriers, preventing hexokinase to cause hyperactive glucose uptake and catabolism.
RESUMEN
The emergence of drug resistance is the most substantial challenge to the effectiveness of anticancer therapies. Orthogonal approaches have revealed that a subset of cells, known as drug-tolerant 'persister' (DTP) cells, have a prominent role in drug resistance. Although long recognized in bacterial populations which have acquired resistance to antibiotics, the presence of DTPs in various cancer types has come to light only in the past two decades, yet several aspects of their biology remain enigmatic. Here, we delve into the biological characteristics of DTPs and explore potential strategies for tracking and targeting them. Recent findings suggest that DTPs exhibit remarkable plasticity, being capable of transitioning between different cellular states, resulting in distinct DTP phenotypes within a single tumour. However, defining the biological features of DTPs has been challenging, partly due to the complex interplay between clonal dynamics and tissue-specific factors influencing their phenotype. Moreover, the interactions between DTPs and the tumour microenvironment, including their potential to evade immune surveillance, remain to be discovered. Finally, the mechanisms underlying DTP-derived drug resistance and their correlation with clinical outcomes remain poorly understood. This Roadmap aims to provide a comprehensive overview of the field of DTPs, encompassing past achievements and current endeavours in elucidating their biology. We also discuss the prospect of future advancements in technologies in helping to unveil the features of DTPs and propose novel therapeutic strategies that could lead to their eradication.
Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Microambiente Tumoral , Tolerancia a MedicamentosRESUMEN
BACKGROUND: Uterine leiomyosarcomas (uLMS) are aggressive tumours with poor prognosis and limited treatment options. Although immune checkpoint blockade (ICB) has proven effective in some 'challenging-to-treat' cancers, clinical trials showed that uLMS do not respond to ICB. Emerging evidence suggests that aberrant PI3K/mTOR signalling can drive resistance to ICB. We therefore explored the relevance of the PI3K/mTOR pathway for ICB treatment in uLMS and explored pharmacological inhibition of this pathway to sensitise these tumours to ICB. METHODS: We performed an integrated multiomics analysis based on TCGA data to explore the correlation between PI3K/mTOR dysregulation and immune infiltration in 101 LMS. We assessed response to PI3K/mTOR inhibitors in immunodeficient and humanized uLMS patient-derived xenografts (PDXs) by evaluating tumour microenvironment modulation using multiplex immunofluorescence. We explored response to single-agent and a combination of PI3K/mTOR inhibitors with PD-1 blockade in humanized uLMS PDXs. We mapped intratumoural dynamics using single-cell RNA/TCR sequencing of serially collected biopsies. RESULTS: PI3K/mTOR over-activation (pS6high) associated with lymphocyte depletion and wound healing immune landscapes in (u)LMS, suggesting it contributes to immune evasion. In contrast, PI3K/mTOR inhibition induced profound tumour microenvironment remodelling in an ICB-resistant humanized uLMS PDX model, fostering adaptive anti-tumour immune responses. Indeed, PI3K/mTOR inhibition induced macrophage repolarisation towards an anti-tumourigenic phenotype and increased antigen presentation on dendritic and tumour cells, but also promoted infiltration of PD-1+ T cells displaying an exhausted phenotype. When combined with anti-PD-1, PI3K/mTOR inhibition led to partial or complete tumour responses, whereas no response to single-agent anti-PD-1 was observed. Combination therapy reinvigorated exhausted T cells and induced clonal hyper-expansion of a cytotoxic CD8+ T-cell population supported by a CD4+ Th1 niche. CONCLUSIONS: Our findings indicate that aberrant PI3K/mTOR pathway activation contributes to immune escape in uLMS and provides a rationale for combining PI3K/mTOR inhibition with ICB for the treatment of this patient population.
Asunto(s)
Leiomiosarcoma , Microambiente Tumoral , Neoplasias Uterinas , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Leiomiosarcoma/tratamiento farmacológico , Humanos , Femenino , Neoplasias Uterinas/tratamiento farmacológico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico , Animales , Ratones , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéuticoRESUMEN
Research on metastatic cancer has been hampered by limited sample availability. Here we present the breast cancer post-mortem tissue donation program UPTIDER and show how it enabled sampling of a median of 31 (range: 5-90) metastases and 5-8 liquids per patient from its first 20 patients. In a dedicated experiment, we show the mild impact of increasing time after death on RNA quality, transcriptional profiles and immunohistochemical staining in tumor tissue samples. We show that this impact can be counteracted by organ cooling. We successfully generated ex vivo models from tissue and liquid biopsies from distinct histological subtypes of breast cancer. We anticipate these and future findings of UPTIDER to elucidate mechanisms of disease progression and treatment resistance and to provide tools for the exploration of precision medicine strategies in the metastatic setting.
RESUMEN
Endothelial cells growing in high glucose-containing medium show reduced cell proliferation and in vitro angiogenesis. Evidence suggests that the molecular pathways leading to these cellular responses are controlled by microRNAs, endogenous post-transcriptional regulators of gene expression. To identify the microRNAs and their targeted genes involved in the glucose responses, we performed the miRNA signature of Human Umbelical Vein Endothelial Cells (HUVECs) exposed and unexposed to high glucose. Among differentially expressed microRNAs, we analysed miR-492 and showed that its overexpression was able to reduce proliferation, migration and tube formation of HUVEC. These effects were accompanied by the down-regulation of eNOS, a key regulator of the endothelial cell function. We showed that eNOS was indirectly down-regulated by miR-492 and we discovered that miR-492 was able to bind mRNAs involved in proliferation, migration, tube formation and regulation of eNOS activity and expression. Moreover, we found that miR-492 decreased VEGF expression in HUVEC and impaired in vivo angiogenesis in a tumour xenograft model, suggesting a role also in modulating the secretion of pro-angiogenic factors. Taken together, the data indicate that miR-492 exerts a potent anti-angiogenic activity in endothelial cells and therefore miR-492 seems a promising tool for anti-angiogenic therapy.
Asunto(s)
Células Endoteliales/metabolismo , MicroARNs/metabolismo , Neovascularización Patológica/genética , Regiones no Traducidas 3'/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Pruebas de Enzimas , Regulación de la Expresión Génica , Células HCT116 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Luciferasas/metabolismo , MicroARNs/genética , Neovascularización Patológica/patología , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Unión Proteica/genética , Factor de Transcripción Sp1/metabolismo , TransfecciónRESUMEN
Burkitt lymphoma (BL) is classified into 3 clinical subsets: endemic, sporadic, and immunodeficiency-associated BL. So far, possible differences in their gene expression profiles (GEPs) have not been investigated. We studied GEPs of BL subtypes, other B-cell lymphomas, and B lymphocytes; first, we found that BL is a unique molecular entity, distinct from other B-cell malignancies. Indeed, by unsupervised analysis all BLs clearly clustered apart of other lymphomas. Second, we found that BL subtypes presented slight differences in GEPs. Particularly, they differed for genes involved in cell cycle control, B-cell receptor signaling, and tumor necrosis factor/nuclear factor κB pathways. Notably, by reverse engineering, we found that endemic and sporadic BLs diverged for genes dependent on RBL2 activity. Furthermore, we found that all BLs were intimately related to germinal center cells, differing from them for molecules involved in cell proliferation, immune response, and signal transduction. Finally, to validate GEP, we applied immunohistochemistry to a large panel of cases and showed that RBL2 can cooperate with MYC in inducing a neoplastic phenotype in vitro and in vivo. In conclusion, our study provided substantial insights on the pathobiology of BLs, by offering novel evidences that may be relevant for its classification and possibly future treatment.
Asunto(s)
Linfoma de Burkitt/clasificación , Linfoma de Burkitt/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Animales , Linfoma de Burkitt/metabolismo , Línea Celular Tumoral , Análisis por Conglomerados , Humanos , Ratones , Ratones Desnudos , Análisis por Micromatrices , Trasplante de Neoplasias , Fenotipo , Trasplante HeterólogoRESUMEN
BACKGROUND: One of the key limitations of targeted cancer therapies is the rapid onset of therapy resistance. Taking BRAF-mutant melanoma as paradigm, we previously identified the lipogenic regulator SREBP-1 as a central mediator of resistance to MAPK-targeted therapy. Reasoning that lipogenesis-mediated alterations in membrane lipid poly-unsaturation lie at the basis of therapy resistance, we targeted fatty acid synthase (FASN) as key player in this pathway to evoke an exquisite vulnerability to clinical inducers of reactive oxygen species (ROS), thereby rationalizing a novel clinically actionable combination therapy to overcome therapy resistance. METHODS: Using gene expression analysis and mass spectrometry-based lipidomics of BRAF-mutant melanoma cell lines, melanoma PDX and clinical data sets, we explored the association of FASN expression with membrane lipid poly-unsaturation and therapy-resistance. Next, we treated therapy-resistant models with a preclinical FASN inhibitor TVB-3664 and a panel of ROS inducers and performed ROS analysis, lipid peroxidation tests and real-time cell proliferation assays. Finally, we explored the combination of MAPK inhibitors, TVB-3664 and arsenic trioxide (ATO, as a clinically used ROS-inducer) in Mel006 BRAF mutant PDX as a gold model of therapy resistance and assessed the effect on tumor growth, survival and systemic toxicity. RESULTS: We found that FASN expression is consistently increased upon the onset of therapy resistance in clinical melanoma samples, in cell lines and in Mel006 PDX and is associated with decreased lipid poly-unsaturation. Forcing lipid poly-unsaturation in therapy-resistant models by combining MAPK inhibition with FASN inhibition attenuated cell proliferation and rendered cells exquisitely sensitive to a host of ROS inducers. In particular, the triple combination of MAPK inhibition, FASN inhibition, and the clinical ROS-inducing compound ATO dramatically increased survival of Mel006 PDX models from 15 to 72% with no associated signs of toxicity. CONCLUSIONS: We conclude that under MAPK inhibition the direct pharmacological inhibition of FASN evokes an exquisite vulnerability to inducers of ROS by increasing membrane lipid poly-unsaturation. The exploitation of this vulnerability by combining MAPK and/or FASN inhibitors with inducers of ROS greatly delays the onset of therapy resistance and increases survival. Our work identifies a clinically actionable combinatorial treatment for therapy-resistant cancer.