Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Evol Biol ; 33(4): 401-409, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31758728

RESUMEN

The canonical model of sex-chromosome evolution assigns a key role to sexually antagonistic (SA) genes on the arrest of recombination and ensuing degeneration of Y chromosomes. This assumption cannot be tested in organisms with highly differentiated sex chromosomes, such as mammals or birds, owing to the lack of polymorphism. Fixation of SA alleles, furthermore, might be the consequence rather than the cause of recombination arrest. Here we focus on a population of common frogs (Rana temporaria) where XY males with genetically differentiated Y chromosomes (nonrecombinant Y haplotypes) coexist with both XY° males with proto-Y chromosomes (only differentiated from X chromosomes in the immediate vicinity of the candidate sex-determining locus Dmrt1) and XX males with undifferentiated sex chromosomes (genetically identical to XX females). Our study finds no effect of sex-chromosome differentiation on male phenotype, mating success or fathering success. Our conclusions rejoin genomic studies that found no differences in gene expression between XY, XY° and XX males. Sexual dimorphism in common frogs might result more from the differential expression of autosomal genes than from sex-linked SA genes. Among-male variance in sex-chromosome differentiation seems better explained by a polymorphism in the penetrance of alleles at the sex locus, resulting in variable levels of sex reversal (and thus of X-Y recombination in XY females), independent of sex-linked SA genes.


Asunto(s)
Aptitud Genética , Ranidae/genética , Cromosoma Y , Animales , Femenino , Masculino , Fenotipo , Reproducción
2.
Mol Ecol ; 25(17): 4285-300, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27220555

RESUMEN

Hotspots of intraspecific genetic diversity, which are of primary importance for the conservation of species, have been associated with glacial refugia, that is areas where species survived the Quaternary climatic oscillations. However, the proximate mechanisms generating these hotspots remain an open issue. Hotspots may reflect the long-term persistence of large refugial populations; alternatively, they may result from allopatric differentiation between small and isolated populations, that later admixed. Here, we test these two scenarios in a widely distributed species of tree frog, Hyla orientalis, which inhabits Asia Minor and southeastern Europe. We apply a fine-scale phylogeographic survey, combining fast-evolving mitochondrial and nuclear markers, with a dense sampling throughout the range, as well as ecological niche modelling, to understand what shaped the genetic variation of this species. We documented an important diversity centre around the Black Sea, composed of multiple allopatric and/or parapatric diversifications, likely driven by a combination of Pleistocene climatic fluctuations and complex regional topography. Remarkably, this diversification forms a ring around the Black Sea, from the Caucasus through Anatolia and eastern Europe, with terminal forms coming into contact and partially admixing in Crimea. Our results support the view that glacial refugia generate rather than host genetic diversity and can also function as evolutionary melting pots of biodiversity. Moreover, we report a new case of ring diversification, triggered by a large, yet cohesive dispersal barrier, a very rare situation in nature. Finally, we emphasize the Black Sea region as an important centre of intraspecific diversity in the Palearctic with implications for conservation.


Asunto(s)
Anuros/genética , Biodiversidad , Variación Genética , Genética de Población , Animales , Asia , Mar Negro , Europa Oriental , Filogeografía , Refugio de Fauna
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA