Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(40): 18494-18503, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36167521

RESUMEN

Site-selective acetylation of a single lysine residue in a protein that reaches a lysine acetyltransferase's accuracy, precision, and reliability is challenging. Here, we report a peptide-guided, proximity-driven group transfer reaction that acetylates a single lysine residue, Lys 248, of the fragment crystallizable region (Fc region) in the heavy chain of the human Immunoglobulin G (IgG). An Fc-interacting peptide bound with the Fc domain and positioned a phenolic ester close to Lys 248, which induced a nucleophilic reaction and resulted in the transfer of an acetyl group to Lys 248. The acetylation reaction proceeded to a decent yield under the physiological condition without the need for deglycosylation, unnatural amino acids, or catalysts. Along with acetylation, functional moieties such as azide, alkyne, fluorescent molecules, or biotin could also be site-selectively installed on Lys 248, allowing IgG's further derivatization. We then synthesized an antibody-lipid conjugate and constructed antibody-conjugated liposomes (immunoliposomes), targeting HER2-positive (HER2+) cancer cells. We also built a bispecific antibody complex (bsAbC) covalently linking an anti-HER2 antibody and an anti-CD3 antibody. The bsAbC showed in vitro effector-cell-mediated cytotoxicity at nanomolar concentrations. Compared with bispecific antibodies (bsAbs), bsAbCs are constructed based on native IgGs and contain two antigen-binding sites to each antigen, twice that of bsAbs. Altogether, this work reports a method of site-selective acetylation of native antibodies, highlights a facile way of site-selective IgG functionalization, and underscores the potential of bsAbCs in cancer immunotherapy.


Asunto(s)
Anticuerpos Biespecíficos , Lisina Acetiltransferasas , Acetilación , Alquinos , Anticuerpos Biespecíficos/química , Azidas , Biotina , Ésteres , Humanos , Inmunoglobulina G/química , Lípidos , Liposomas , Lisina , Reproducibilidad de los Resultados
2.
Methods Mol Biol ; 2841: 101-109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115769

RESUMEN

Molecular farming, also known as plant molecular farming (PMF), is a technique that involves using plants and plant cells as bioreactors to produce recombinant proteins. This is a cost-effective and sustainable way of producing large quantities of proteins for various applications, including pharmaceuticals, vaccines, and industrial enzymes. An endogenous or exogenous signal peptide (SP) is flanked at the N-terminal for recombinant protein targeting and storage. These SPs are responsible for guiding the recombinant protein products to the correct destination within the plant cell or facilitating their secretion into the extracellular space. In this chapter, we will give a brief introduction of the current PMF research outcomes supported by the basic study of vesicle trafficking and protein secretion, mainly introducing the bright yellow 2 (BY-2) cell-based secretion pathway and its associated protocols according to our study of recombinant human iduronidase.


Asunto(s)
Proteínas de Plantas , Proteínas Recombinantes , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Humanos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Agricultura Molecular/métodos , Señales de Clasificación de Proteína/genética , Transporte de Proteínas , Reactores Biológicos
3.
Nat Commun ; 12(1): 3007, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021140

RESUMEN

Small heat shock proteins (sHsps) bind unfolding proteins, thereby playing a pivotal role in the maintenance of proteostasis in virtually all living organisms. Structural elucidation of sHsp-substrate complexes has been hampered by the transient and heterogeneous nature of their interactions, and the precise mechanisms underlying substrate recognition, promiscuity, and chaperone activity of sHsps remain unclear. Here we show the formation of a stable complex between Arabidopsis thaliana plastid sHsp, Hsp21, and its natural substrate 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) under heat stress, and report cryo-electron microscopy structures of Hsp21, DXPS and Hsp21-DXPS complex at near-atomic resolution. Monomeric Hsp21 binds across the dimer interface of DXPS and engages in multivalent interactions by recognizing highly dynamic structural elements in DXPS. Hsp21 partly unfolds its central α-crystallin domain to facilitate binding of DXPS, which preserves a native-like structure. This mode of interaction suggests a mechanism of sHsps anti-aggregation activity towards a broad range of substrates.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Choque Térmico Pequeñas/química , Proteínas de Choque Térmico Pequeñas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microscopía por Crioelectrón , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico Pequeñas/genética , Respuesta al Choque Térmico , Modelos Moleculares , Pliegue de Proteína , Transferasas/química , Transferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA