Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
BMC Genomics ; 22(1): 741, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34649511

RESUMEN

BACKGROUND: Emerging evidence indicates that long noncoding RNAs (lncRNAs) are important regulators of various biological processes, and their expression can be altered following certain pathological conditions, including central nervous system injury. Retinal ganglion cells (RGCs), whose axons form the optic nerve, are a heterogeneous population of neurons with more than 40 molecularly distinct subtypes in mouse. While most RGCs, including the ON-OFF direction-selective RGCs (ooDSGCs), are vulnerable to axonal injury, a small population of RGCs, including the intrinsically photosensitive RGCs (ipRGCs), are more resilient. RESULTS: By performing systematic analyses on RNA-sequencing data, here we identify lncRNAs that are expressed in ooDSGCs and ipRGCs with and without axonal injury. Our results reveal a repertoire of different classes of lncRNAs, including long intergenic noncoding RNAs and antisense ncRNAs that are differentially expressed between these RGC types. Strikingly, we also found dozens of lncRNAs whose expressions are altered markedly in response to axonal injury, some of which are expressed exclusively in either one of the types. Moreover, analyses into these lncRNAs unraveled their neighboring coding genes, many of which encode transcription factors and signaling molecules, suggesting that these lncRNAs may act in cis to regulate important biological processes in these neurons. Lastly, guilt-by-association analysis showed that lncRNAs are correlated with apoptosis associated genes, suggesting potential roles for these lncRNAs in RGC survival. CONCLUSIONS: Overall, the results of this study reveal RGC type-specific expression of lncRNAs and provide a foundation for future investigation of the function of lncRNAs in regulating neuronal type specification and survival.


Asunto(s)
Traumatismos del Nervio Óptico , ARN Largo no Codificante , Animales , Axones , Ratones , Regeneración Nerviosa , Traumatismos del Nervio Óptico/genética , ARN Largo no Codificante/genética , Células Ganglionares de la Retina
2.
J Cell Sci ; 129(19): 3533-3540, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27609838

RESUMEN

Tescalcin (TESC, also known as calcineurin-homologous protein 3, CHP3) is a 24-kDa EF-hand Ca2+-binding protein that has recently emerged as a regulator of cell differentiation and growth. The TESC gene has also been linked to human brain abnormalities, and high expression of tescalcin has been found in several cancers. The expression level of tescalcin changes dramatically during development and upon signal-induced cell differentiation. Recent studies have shown that tescalcin is not only subjected to up- or down-regulation, but also has an active role in pathways that drive cell growth and differentiation programs. At the molecular level, there is compelling experimental evidence showing that tescalcin can directly interact with and regulate the activities of the Na+/H+ exchanger NHE1, subunit 4 of the COP9 signalosome (CSN4) and protein kinase glycogen-synthase kinase 3 (GSK3). In hematopoetic precursor cells, tescalcin has been shown to couple activation of the extracellular signal-regulated kinase (ERK) cascade to the expression of transcription factors that control cell differentiation. The purpose of this Commentary is to summarize recent efforts that have served to characterize the biochemical, genetic and physiological attributes of tescalcin, and its unique role in the regulation of various cellular functions.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Diferenciación Celular , Motivos EF Hand , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/química , Diferenciación Celular/genética , Proliferación Celular , Sistema Nervioso Central/anomalías , Sistema Nervioso Central/metabolismo , Humanos
3.
FASEB J ; 31(11): 4734-4744, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28687610

RESUMEN

In pancreatic ß cells, muscarinic cholinergic receptor M3 (M3R) stimulates glucose-induced secretion of insulin. Regulator of G-protein signaling (RGS) proteins are critical modulators of GPCR activity, yet their role in ß cells remains largely unknown. R7 subfamily RGS proteins are stabilized by the G-protein subunit Gß5, such that the knockout of the Gnb5 gene results in degradation of all R7 subunits. We found that Gnb5 knockout in mice or in the insulin-secreting MIN6 cell line almost completely eliminates insulinotropic activity of M3R. Moreover, overexpression of Gß5-RGS7 strongly promotes M3R-stimulated insulin secretion. Examination of this noncanonical mechanism in Gnb5-/- MIN6 cells showed that cAMP, diacylglycerol, or Ca2+ levels were not significantly affected. There was no reduction in the amplitude of free Ca2+ responses in islets from the Gnb5-/- mice, but the frequency of Ca2+ oscillations induced by cholinergic agonist was lowered by more than 30%. Ablation of Gnb5 impaired M3R-stimulated phosphorylation of ERK1/2. Stimulation of the ERK pathway in Gnb5-/- cells by epidermal growth factor restored M3R-stimulated insulin release to near normal levels. Identification of the novel role of Gß5-R7 in insulin secretion may lead to a new therapeutic approach for improving pancreatic ß-cell function.-Wang, Q., Pronin, A. N., Levay, K., Almaca, J., Fornoni, A., Caicedo, A., Slepak, V. Z. Regulator of G-protein signaling Gß5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion.


Asunto(s)
Señalización del Calcio/fisiología , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas RGS/metabolismo , Receptor Muscarínico M3/metabolismo , Animales , Calcio/metabolismo , Línea Celular , AMP Cíclico/genética , AMP Cíclico/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Ratones , Ratones Noqueados , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/fisiología , Proteínas RGS/genética , Receptor Muscarínico M3/genética
4.
J Cell Sci ; 127(Pt 11): 2448-59, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24659803

RESUMEN

The Ca(2+)-binding protein tescalcin is known to be involved in hematopoietic cell differentiation; however, this mechanism is poorly understood. Here, we identify CSN4 (subunit 4 of the COP9 signalosome) as a novel binding partner of tescalcin. The COP9 signalosome (CSN) is a multiprotein complex that is essential for development in all eukaryotes. This interaction is selective, Ca(2+)-dependent and involves the PCI domain of CSN4 subunit. We then investigated tescalcin and CSN activity in human erythroleukemia HEL and promyelocytic leukemia K562 cells and find that phorbol 12-myristate 13-acetate (PMA)-induced differentiation, resulting in the upregulation of tescalcin, coincides with reduced deneddylation of cullin-1 (Cul1) and stabilization of p27(Kip1) - molecular events that are associated with CSN activity. The knockdown of tescalcin led to an increase in Cul1 deneddylation, expression of F-box protein Skp2 and the transcription factor c-Jun, whereas the levels of cell cycle regulators p27(Kip1) and p53 decreased. These effects are consistent with the hypothesis that tescalcin might play a role as a negative regulator of CSN activity towards Cul1 in the process of induced cell differentiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas Cullin/metabolismo , Hematopoyesis , Complejos Multiproteicos/metabolismo , Complejo del Señalosoma COP9 , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Diferenciación Celular/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación de la Expresión Génica/genética , Hematopoyesis/genética , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células K562 , Unión Proteica/genética , ARN Interferente Pequeño/genética , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Biochemistry ; 54(4): 1077-88, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25551629

RESUMEN

The muscarinic M3 receptor (M3R) is a Gq-coupled receptor and is known to interact with many intracellular regulatory proteins. One of these molecules is Gß5-RGS7, the permanently associated heterodimer of G protein ß-subunit Gß5 and RGS7, a regulator of G protein signaling. Gß5-RGS7 can attenuate M3R-stimulated release of Ca(2+) from intracellular stores or enhance the influx of Ca(2+) across the plasma membrane. Here we show that deletion of amino acids 304-345 from the central portion of the i3 loop renders M3R insensitive to regulation by Gß5-RGS7. In addition to the i3 loop, interaction of M3R with Gß5-RGS7 requires helix 8. According to circular dichroism spectroscopy, the peptide corresponding to amino acids 548-567 in the C-terminus of M3R assumes an α-helical conformation. Substitution of Thr553 and Leu558 with Pro residues disrupts this α-helix and abolished binding to Gß5-RGS7. Introduction of the double Pro substitution into full-length M3R (M3R(TP/LP)) prevents trafficking of the receptor to the cell surface. Using atropine or other antagonists as pharmacologic chaperones, we were able to increase the level of surface expression of the TP/LP mutant to levels comparable to that of wild-type M3R. However, M3R-stimulated calcium signaling is still severely compromised. These results show that the interaction of M3R with Gß5-RGS7 requires helix 8 and the central portion of the i3 loop.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/fisiología , Receptor Muscarínico M3/química , Receptor Muscarínico M3/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión/fisiología , Colinérgicos/farmacología , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Datos de Secuencia Molecular , Receptor Muscarínico M3/agonistas
7.
Exp Neurol ; 377: 114810, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38714284

RESUMEN

Most projection neurons, including retinal ganglion cells (RGCs), undergo cell death after axotomy proximal to the cell body. Specific RGC subtypes, such as ON-OFF direction selective RGCs (ooDSGCs) are particularly vulnerable, whereas intrinsically photosensitive RGCs (ipRGCs) exhibit resilience to axonal injury. Through the application of RNA sequencing and fluorescent in situ hybridization, we show that the expression of chloride intracellular channel protein 1 and 4 (Clic1 and Clic4) are highly increased in the ooDSGCs after axonal injury. Toward determining a gene's role in RGCs, we optimized the utility and efficacy of adenovirus associated virus (AAV)-retro expressing short hairpin RNA (shRNA). Injection of AAV2-retro into the superior colliculus results in efficient shRNA expression in RGCs. Incorporating histone H2B gene fused with mGreenLantern results in bright nuclear reporter expression, thereby enhancing single RGC identification and cell quantitation in live retinas. Lastly, we demonstrate that AAV2-retro mediated knockdown of both Clic1 and Clic4 promotes RGC survival after injury. Our findings establish an integrated use of AAV2-retro-shRNA and real-time fundus imaging and reveal CLICs' contribution to RGC death.


Asunto(s)
Muerte Celular , Canales de Cloruro , Dependovirus , Células Ganglionares de la Retina , Animales , Células Ganglionares de la Retina/metabolismo , Dependovirus/genética , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Muerte Celular/fisiología , Ratones , Ratones Endogámicos C57BL , Masculino , ARN Interferente Pequeño/genética
8.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36778361

RESUMEN

The superior colliculus (SC) is a sensorimotor structure in the midbrain that integrates input from multiple sensory modalities to initiate motor commands. It undergoes well-characterized steps of circuit assembly during development, rendering the mouse SC a popular model to study establishment and refinement of neural connectivity. Here we performed single nucleus RNA-sequencing analysis of the mouse SC isolated at various developmental time points. Our study provides a transcriptomic landscape of the cell types that comprise the SC across murine development with particular emphasis on neuronal heterogeneity. We used these data to identify Pax7 as a marker for an anatomically homogeneous population of GABAergic neurons. Lastly, we report a repertoire of genes differentially expressed across the different postnatal ages, many of which are known to regulate axon guidance and synapse formation. Our data provide a valuable resource for interrogating the mechanisms of circuit development, and identifying markers for manipulating specific SC neuronal populations and circuits.

9.
Cell Rep ; 42(9): 113037, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37624694

RESUMEN

The superior colliculus (SC) is a sensorimotor structure in the midbrain that integrates input from multiple sensory modalities to initiate motor commands. It undergoes well-characterized steps of circuit assembly during development, rendering the mouse SC a popular model to study establishment of neural connectivity. Here we perform single-nucleus RNA-sequencing analysis of the mouse SC isolated at various developmental time points. Our study provides a transcriptomic landscape of the cell types that comprise the SC across murine development with particular emphasis on neuronal heterogeneity. We report a repertoire of genes differentially expressed across the different postnatal ages, many of which are known to regulate axon guidance and synapse formation. Using these data, we find that Pax7 expression is restricted to a subset of GABAergic neurons. Our data provide a valuable resource for interrogating the mechanisms of circuit development and identifying markers for manipulating specific SC neuronal populations and circuits.


Asunto(s)
Neuronas GABAérgicas , Colículos Superiores , Ratones , Animales , Colículos Superiores/fisiología , Transcriptoma/genética , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN
10.
J Neurochem ; 122(3): 568-81, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22640015

RESUMEN

The R7 family of regulators of G protein signaling (RGS) is involved in many functions of the nervous system. This family includes RGS6, RGS7, RGS9, and RGS11 gene products and is defined by the presence of the characteristic first found in Disheveled, Egl-10, Pleckstrin (DEP), DEP helical extension (DHEX), Gγ-like, and RGS domains. Herein, we examined the subcellular localization of RGS7, the most broadly expressed R7 member. Our immunofluorescence studies of retinal and dorsal root ganglion neurons showed that RGS7 concentrated at the plasma membrane of cell bodies, in structures resembling lamellipodia or filopodia along the processes, and at the dendritic tips. At the plasma membrane of dorsal root ganglia neurons, RGS7 co-localized with its known binding partners R7 RGS binding protein (R7BP), Gαo, and Gαq. More than 50% of total RGS7-specific immunofluorescence was present in the cytoplasm, primarily within numerous small puncta that did not co-localize with R7BP. No specific RGS7 or R7BP immunoreactivity was detected in the nuclei. In transfected cell lines, ectopic RGS7 had both diffuse cytosolic and punctate localization patterns. RGS7 also localized in centrosomes. Structure-function analysis showed that the punctate localization was mediated by the DEP/DHEX domains, and centrosomal localization was dependent on the DHEX domain.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Neuronas/metabolismo , Proteínas RGS/metabolismo , Fracciones Subcelulares/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cricetinae , Cricetulus , Subunidades beta de la Proteína de Unión al GTP/deficiencia , Ganglios Espinales/citología , Regulación de la Expresión Génica/genética , Imagenología Tridimensional , Inmunoprecipitación , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Mutación/genética , Neuronas/citología , Conformación Proteica , Proteínas RGS/genética , Retina/citología , Retina/metabolismo , Transfección
11.
FASEB J ; 25(11): 3949-57, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21804131

RESUMEN

We investigated the physiological role of Gß5, a unique G protein ß subunit that dimerizes with regulators of G protein signaling (RGS) proteins of the R7 family instead of Gγ. Gß5 is essential for stability of these complexes, so that its knockout (KO)causes degradation of the entire Gß5-R7 family. We report that the Gß5-KO mice remain leaner than the wild type (WT) throughout their lifetime and are resistant to a high-fat diet. They have a 5-fold increase in locomotor activity, increased thermogenesis, and lower serum insulin, all of which correlate with a higher level of secreted epinephrine. Heterozygous (HET) mice are 2-fold more active than WT mice. Surprisingly, with respect to body weight, the HET mice display a phenotype opposite to that of the KO mice: by the age of 6 mo, they are ≥ 15% heavier than the WT and have increased adiposity, insulin resistance, and liver steatosis. These changes occur in HET mice fed a normal diet and without apparent hyperphagia, mimicking basic characteristics of human metabolic syndrome. We conclude that even a partial reduction in Gß5-R7 level can perturb normal animal metabolism and behavior. Our data on Gß5 haploinsufficient mice may explain earlier observations of genetic linkage between R7 family mutations and obesity in humans.


Asunto(s)
Conducta Animal , Peso Corporal/genética , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/fisiología , Actividad Motora , Animales , Glucemia/metabolismo , Catecolaminas/orina , Dieta Alta en Grasa , Ingestión de Alimentos , Metabolismo Energético , Epinefrina/metabolismo , Heterocigoto , Insulina/sangre , Ratones , Ratones Noqueados
12.
Exp Neurol ; 355: 114147, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35738417

RESUMEN

Following injury in the central nervous system, a population of astrocytes occupy the lesion site, form glial bridges and facilitate axon regeneration. These astrocytes originate primarily from resident astrocytes or NG2+ oligodendrocyte progenitor cells. However, the extent to which these cell types give rise to the lesion-filling astrocytes, and whether the astrocytes derived from different cell types contribute similarly to optic nerve regeneration remain unclear. Here we examine the distribution of astrocytes and NG2+ cells in an optic nerve crush model. We show that optic nerve astrocytes partially fill the injury site over time after a crush injury. Viral mediated expression of a growth-promoting factor, ciliary neurotrophic factor (CNTF), in retinal ganglion cells (RGCs) promotes axon regeneration without altering the lesion size or the degree of lesion-filling GFAP+ cells. Strikingly, using inducible NG2CreER driver mice, we found that CNTF overexpression in RGCs increases the occupancy of NG2+ cell-derived astrocytes in the optic nerve lesion. An EdU pulse-chase experiment shows that the increase in NG2 cell-derived astrocytes is not due to an increase in cell proliferation. Lastly, we performed RNA-sequencing on the injured optic nerve and reveal that CNTF overexpression in RGCs results in significant changes in the expression of distinct genes, including those that encode chemokines, growth factor receptors, and immune cell modulators. Even though CNTF-induced axon regeneration has long been recognized, this is the first evidence of this procedure affecting glial cell fate at the optic nerve crush site. We discuss possible implication of these results for axon regeneration.


Asunto(s)
Traumatismos del Nervio Óptico , Traumatismos del Sistema Nervioso , Animales , Astrocitos/metabolismo , Axones/patología , Factor Neurotrófico Ciliar , Citocinas/metabolismo , Ratones , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/patología , Células Ganglionares de la Retina/metabolismo , Traumatismos del Sistema Nervioso/metabolismo
13.
Exp Cell Res ; 316(7): 1254-62, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20060826

RESUMEN

Tescalcin is a 25-kDa EF-hand Ca(2+)-binding protein that is differentially expressed in several mammalian tissues. Previous studies demonstrated that expression of this protein is essential for differentiation of hematopoietic precursor cell lines and primary stem cells into megakaryocytes. Here we show that tescalcin is expressed in primary human granulocytes and is upregulated in human promyelocytic leukemia HL-60 cells that have been induced to differentiate along the granulocytic lineage. However, during induced macrophage-like differentiation of HL-60 cells the expression of tescalcin is downregulated. The decrease in expression is associated with a rapid drop in tescalcin mRNA level, whereas upregulation occurs via a post-transcriptional mechanism. Tescalcin is necessary for HL-60 differentiation into granulocytes as its knockdown by shRNA impairs the ability of HL-60 cells to acquire the characteristic phenotypes such as phagocytic activity and generation of reactive oxygen species measured by respiratory burst assay. Both up- and downregulation of tescalcin require activation of the MEK/ERK cascade. It appears that commitment of HL-60 cells toward granulocytic versus macrophage-like lineage correlates with expression of tescalcin and kinetics of ERK activation. In retinoic acid-induced granulocytic differentiation, the activation of ERK and upregulation of tescalcin occurs slowly (16-48 h). In contrast, in PMA-induced macrophage-like differentiation the activation of ERK is rapid (15-30 min) and tescalcin is downregulated. These studies indicate that tescalcin is one of the key gene products that is involved in switching differentiation program in some cell types.


Asunto(s)
Proteínas de Unión al Calcio/genética , Diferenciación Celular/genética , Granulocitos/fisiología , Células HL-60/fisiología , Macrófagos/fisiología , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/fisiología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Granulocitos/efectos de los fármacos , Granulocitos/metabolismo , Células HL-60/efectos de los fármacos , Células HL-60/metabolismo , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Humanos , Macrófagos/metabolismo , ARN Interferente Pequeño/farmacología , Tretinoina/farmacología , Células U937 , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
14.
Biochemistry ; 49(24): 4998-5006, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20443543

RESUMEN

The complex of the regulator of G protein signaling (RGS), Gbeta(5)-RGS7, can inhibit signal transduction via the M3 muscarinic acetylcholine receptor (M3R). RGS7 consists of three distinct structural entities: the DEP domain and its extension DHEX, the Ggamma-like (GGL) domain, which is permanently bound to Gbeta subunit Gbeta(5), and the RGS domain responsible for the interaction with Galpha subunits. Inhibition of the M3R by Gbeta(5)-RGS7 is independent of the RGS domain but requires binding of the DEP domain to the third intracellular loop of the receptor. Recent studies identified the dynamic intramolecular interaction between the Gbeta(5) and DEP domains, which suggested that the Gbeta(5)-RGS7 dimer could alternate between the "open" and "closed" conformations. Here, we identified point mutations that weaken DEP-Gbeta(5) binding, presumably stabilizing the open state, and tested their effects on the interaction of Gbeta(5)-RGS7 with the M3R. We found that these mutations facilitated binding of Gbeta(5)-RGS7 to the recombinant third intracellular loop of the M3R but did not enhance its ability to inhibit M3R-mediated Ca(2+) mobilization. This led us to the idea that the M3R can effectively induce the Gbeta(5)-RGS7 dimer to open; such a mechanism would require a region of the receptor distinct from the third loop. Indeed, we found that the C-terminus of M3R interacts with Gbeta(5)-RGS7. Truncation of the C-terminus rendered the M3R insensitive to inhibition by wild-type Gbeta(5)-RGS7; however, the open mutant of Gbeta(5)-RGS7 was able to inhibit signaling by the truncated M3R. The GST fusion of the M3R C-tail could not bind to wild-type Gbeta(5)-RGS7 but could associate with its open mutant as well as with the separated recombinant DEP domain or Gbeta(5). Taken together, our data are consistent with the following model: interaction of the M3R with Gbeta(5)-RGS7 causes the DEP domain and Gbeta(5) to dissociate from each other and bind to the C-tail, and the DEP domain also binds to the third loop, thereby inhibiting M3R-mediated signaling.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/química , Proteínas RGS/química , Receptor Muscarínico M3/química , Animales , Células CHO , Cricetinae , Cricetulus , Subunidades beta de la Proteína de Unión al GTP/genética , Glutatión Transferasa/genética , Humanos , Mutación Puntual , Unión Proteica , Proteínas RGS/genética , Receptor Muscarínico M3/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Transducción de Señal
15.
J Clin Invest ; 117(9): 2672-83, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17717601

RESUMEN

We show here that the process of megakaryocytic differentiation requires the presence of the recently discovered protein tescalcin. Tescalcin is dramatically upregulated during the differentiation and maturation of primary megakaryocytes or upon PMA-induced differentiation of K562 cells. This upregulation requires sustained signaling through the ERK pathway. Overexpression of tescalcin in K562 cells initiates events of spontaneous megakaryocytic differentiation, such as expression of specific cell surface antigens, inhibition of cell proliferation, and polyploidization. Conversely, knockdown of this protein in primary CD34+ hematopoietic progenitors and cell lines by RNA interference suppresses megakaryocytic differentiation. In cells lacking tescalcin, the expression of Fli-1, Ets-1, and Ets-2 transcription factors, but not GATA-1 or MafB, is blocked. Thus, tescalcin is essential for the coupling of ERK cascade activation with the expression of Ets family genes in megakaryocytic differentiation.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica , Megacariocitos/citología , Megacariocitos/metabolismo , Telomerasa/clasificación , Telomerasa/genética , Antígenos CD34/metabolismo , Células de la Médula Ósea/metabolismo , Proteínas de Unión al Calcio/genética , Adhesión Celular , Línea Celular , Proliferación Celular/efectos de los fármacos , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Integrinas/metabolismo , Forbol 12,13-Dibutirato/farmacología , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Poliploidía , Telomerasa/metabolismo , Transcripción Genética/genética
16.
Biochem J ; 417(3): 803-12, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18840097

RESUMEN

Vertebrate phototransduction is mediated by cGMP, which is generated by retGC (retinal guanylate cyclase) and degraded by cGMP phosphodiesterase. Light stimulates cGMP hydrolysis via the G-protein transducin, which directly binds to and activates phosphodiesterase. Bright light also causes relocalization of transducin from the OS (outer segments) of the rod cells to the inner compartments. In the present study, we show experimental evidence for a previously unknown interaction between G(alphat) (the transducin alpha subunit) and retGC. G(alphat) co-immunoprecipitates with retGC from the retina or from co-transfected COS-7 cells. The retGC-G(alphat) complex is also present in cones. The interaction also occurs in mice lacking RGS9 (regulator of G-protein signalling 9), a protein previously shown to associate with both G(alphat) and retGC. The G(alphat)-retGC interaction is mediated primarily by the kinase homology domain of retGC, which binds GDP-bound G(alphat) stronger than the GTP[S] (GTPgammaS; guanosine 5'-[gamma-thio]triphosphate) form. Neither G(alphat) nor G(betagamma) affect retGC-mediated cGMP synthesis, regardless of the presence of GCAP (guanylate cyclase activating protein) and Ca2+. The rate of light-dependent transducin redistribution from the OS to the inner segments is markedly accelerated in the retGC-1-knockout mice, while the migration of transducin to the OS after the onset of darkness is delayed. Supplementation of permeabilized photoreceptors with cGMP does not affect transducin translocation. Taken together, these results suggest that the protein-protein interaction between G(alphat) and retGC represents a novel mechanism regulating light-dependent translocation of transducin in rod photoreceptors.


Asunto(s)
Guanilato Ciclasa/metabolismo , Subunidades de Proteína/análisis , Subunidades de Proteína/metabolismo , Retina/enzimología , Transducina/análisis , Transducina/metabolismo , Animales , Células COS , Bovinos , Células Cultivadas , Chlorocebus aethiops , Guanilato Ciclasa/genética , Humanos , Inmunoprecipitación , Ratones , Ratones Noqueados , Retina/metabolismo , Transfección
17.
eNeuro ; 7(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32967889

RESUMEN

Growing axons in the CNS often migrate along specific pathways to reach their targets. During embryonic development, this migration is guided by different types of cell adhesion molecules (CAMs) present on the surface of glial cells or other neurons, including the neural cadherin (NCAD). Axons in the adult CNS can be stimulated to regenerate, and travel long distances. Crucially, however, while a few axons are guided effectively through the injured nerve under certain conditions, most axons never migrate properly. The molecular underpinnings of the variable growth, and the glial CAMs that are responsible for CNS axon regeneration remain unclear. Here we used optic nerve crush to demonstrate that NCAD plays multifaceted functions in facilitating CNS axon regeneration. Astrocyte-specific deletion of NCAD dramatically decreases regeneration induced by phosphatase and tensin homolog (PTEN) ablation in retinal ganglion cells (RGCs). Consistent with NCAD's tendency to act as homodimers, deletion of NCAD in RGCs also reduces regeneration. Deletion of NCAD in astrocytes neither alters RGCs' mammalian target of rapamycin complex 1 (mTORC1) activity nor lesion size, two factors known to affect regeneration. Unexpectedly, however, we find that NCAD deletion in RGCs reduces PTEN-deletion-induced RGC survival. We further show that NCAD deletion, in either astrocytes or RGCs, has negligible effects on the regeneration induced by ciliary neurotrophic factor (CNTF), suggesting that other CAMs are critical under this regenerative condition. Consistent with this notion, CNTF induces expression various integrins known to mediate cell adhesion. Together, our study reveals multilayered functions of NCAD and a molecular basis of variability in guided axon growth.


Asunto(s)
Axones , Cadherinas , Traumatismos del Nervio Óptico , Animales , Ratones Endogámicos C57BL , Regeneración Nerviosa , Células Ganglionares de la Retina
18.
Neuron ; 103(4): 642-657.e7, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31255486

RESUMEN

Neuronal subtypes show diverse injury responses, but the molecular underpinnings remain elusive. Using transgenic mice that allow reliable visualization of axonal fate, we demonstrate that intrinsically photosensitive retinal ganglion cells (ipRGCs) are both resilient to cell death and highly regenerative. Using RNA sequencing (RNA-seq), we show genes that are differentially expressed in ipRGCs and that associate with their survival and axon regeneration. Strikingly, thrombospondin-1 (Thbs1) ranked as the most differentially expressed gene, along with the well-documented injury-response genes Atf3 and Jun. THBS1 knockdown in RGCs eliminated axon regeneration. Conversely, RGC overexpression of THBS1 enhanced regeneration in both ipRGCs and non-ipRGCs, an effect that was dependent on syndecan-1, a known THBS1-binding protein. All structural domains of the THBS1 were not equally effective; the trimerization and C-terminal domains promoted regeneration, while the THBS type-1 repeats were dispensable. Our results identify cell-type-specific induction of Thbs1 as a novel gene conferring high regenerative capacity.


Asunto(s)
Regeneración Nerviosa/fisiología , Células Ganglionares de la Retina/fisiología , Trombospondina 1/fisiología , Animales , Apoptosis , Axones/metabolismo , Línea Celular , Femenino , Perfilación de la Expresión Génica , Genes Reporteros , Factor I del Crecimiento Similar a la Insulina/deficiencia , Factor I del Crecimiento Similar a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Compresión Nerviosa , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/fisiopatología , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Opsinas de Bastones/deficiencia , Opsinas de Bastones/fisiología , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/fisiología , Trombospondina 1/biosíntesis , Trombospondina 1/genética , Transcripción Genética
19.
PLoS One ; 9(4): e96435, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24789354

RESUMEN

PURPOSE: To advance our understanding how the outer eye interacts with its environment, we asked which cellular receptors are expressed in the cornea, focusing on G protein-coupled receptors. METHODS: Total RNA from the mouse cornea was subjected to next-generation sequencing using the Illumina platform. The data was analyzed with TopHat and CuffLinks software packages. Expression of a representative group of genes detected by RNA-seq was further analyzed by RT-PCR and in situ hybridization using RNAscope technology and fluorescent microscopy. RESULTS: We generated more than 46 million pair-end reads from mouse corneal RNA. Bioinformatics analysis revealed that the mouse corneal transcriptome reconstructed from these reads represents over 10,000 gene transcripts. We identified 194 GPCR transcripts, of which 96 were putative olfactory receptors. RT-PCR analysis confirmed the presence of several olfactory receptors and related genes, including olfactory marker protein and the G protein associated with olfaction, Gαolf. In situ hybridization showed that mRNA for olfactory marker protein, Gαolf and possibly some olfactory receptors were found in the corneal epithelial cells. In addition to the corneal epithelium, Gαolf was present in the ganglionic and inner nuclear layers of the retina. One of the olfactory receptors, Olfr558, was present primarily in vessels of the eye co-stained with antibodies against alpha-smooth muscle actin, indicating expression in arterioles. CONCLUSIONS: Several species of mRNA encoding putative olfactory receptors and related genes are expressed in the mouse cornea and other parts of the eye indicating they may play a role in sensing chemicals in the ocular environment.


Asunto(s)
Córnea/metabolismo , ARN Mensajero/genética , Receptores Odorantes/genética , Olfato , Animales , Expresión Génica , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/aislamiento & purificación , Transducción de Señal
20.
PLoS One ; 7(12): e50371, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23227169

RESUMEN

Photosensitive behaviors and circadian rhythms are well documented in reef-building corals and their larvae, but the mechanisms responsible for photoreception have not been described in these organisms. Here we report the cloning, immunolocalization, and partial biochemical characterization of three opsins and four G proteins expressed in planulae of the Caribbean elkhorn coral, Acropora palmata. All three opsins (acropsins 1-3) possess conserved seven-pass transmembrane structure, and localize to distinct regions of coral planulae. Acropsin 1 was localized in the larval endoderm, while acropsin 2 was localized in solitary cells of the ectoderm. These rod-like cells displayed a remarkably polarized distribution, concentrated in the aboral end. We also cloned four A. palmata G protein alpha subunits. Three were homologs of vertebrate Gi, Go, and Gq. The fourth is presumably a novel G protein, which displays only 40% identity with the nearest known G protein, and we termed it Gc for "cnidarian". We show that Gc and Gq can be activated by acropsins in a light-dependent manner in vitro. This indicates that at least acropsins 1 and 3 can form functional photoreceptors and potentially may play a role in color preference during settlement, vertical positioning and other light-guided behaviors observed in coral larvae.


Asunto(s)
Antozoos/metabolismo , Fototransducción , Secuencia de Aminoácidos , Animales , Antozoos/fisiología , Clonación Molecular , Humanos , Microscopía Fluorescente , Datos de Secuencia Molecular , Opsinas/química , Opsinas/genética , Opsinas/fisiología , Proteolisis , Homología de Secuencia de Aminoácido , Tripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA